已知數(shù)列{an}滿足a1=3,an+1=an+p·3n(n∈N*,p為常數(shù)),a1,a2+6,a3成等差數(shù)列.
(1)求p的值及數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=,證明:bn≤.
(1)an=3n(2)
【解析】由a1=3,an+1=an+p·3n,得a2=3+3p,a3=a2+9p=3+12p.
∵a1,a2+6,a3成等差數(shù)列,∴a1+a3=2(a2+6),即3+3+12p=2(3+3p+6),得p=2.
依題意知,an+1=an+2×3n,
當n≥2時,a2-a1=2×31,a3-a2=2×32,…,an-an-1=2×3n-1.
等號兩邊分別相加得an-a1=2(31+32+…+3n-1)=2×=3n-3,
∴an-a1=3n-3,∴an=3n(n≥2).
又a1=3適合上式,故an=3n.
(2)證明:∵an=3n,∴bn=.
∵bn+1-bn=-= (n∈N*).
若-2n2+2n+1<0,則n>,
即當n≥2時,有bn+1<bn.
又因為b1=,b2<.故bn≤
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關(guān)訓練倒數(shù)第10天練習卷(解析版) 題型:選擇題
已知集合M={a,b,c},集合N滿足N⊆M,則集合N的個數(shù)是( ).
A.6 B.7 C.8 D.9
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關(guān)訓練3-x4練習卷(解析版) 題型:選擇題
已知某8個數(shù)的平均數(shù)為5,方差為2,現(xiàn)又加入一個新數(shù)據(jù)5,此時這9個數(shù)的平均數(shù)為,方差為s2,則( ).
A. =5,s2<2 B. =5,s2>2 C. >5,s2<2 D. >5,s2>2
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關(guān)訓練3-x1練習卷(解析版) 題型:選擇題
正四棱錐S-ABCD的側(cè)棱長為,底面邊長為,E為SA的中點,則異面直線BE和SC所成的角為( ).
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關(guān)訓練3-d4練習卷(解析版) 題型:解答題
設數(shù)列{an}的前n項和為Sn,a1=1,且對任意正整數(shù)n,點(an+1,Sn)在直線3x+2y-3=0上.
(1)求數(shù)列{an}的通項公式;
(2)是否存在實數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,求出λ的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關(guān)訓練2-2練習卷(解析版) 題型:解答題
某次考試中,從甲,乙兩個班各抽取10名學生的成績進行統(tǒng)計分析,兩班10名學生成績的莖葉圖如圖所示,成績不小于90分為及格.
(1)從每班抽取的學生中各抽取一人,求至少有一個及格的概率;
(2)從甲班10人中取兩人,乙班10人中取一人,三人中及格人數(shù)記為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關(guān)訓練2-1練習卷(解析版) 題型:解答題
在△ABC中,角A,B,C的對邊分別為a,b,c,已知角A=, sin B=3sin C.
(1)求tan C的值;
(2)若a=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關(guān)訓練1-9練習卷(解析版) 題型:填空題
如圖,橢圓=1(a>b>0)的左、右焦點為F1,F2,上頂點為A,離心率為,點P為第一象限內(nèi)橢圓上的一點,若S△PF1A∶S△PF1F2=2∶1,則直線PF1的斜率為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關(guān)訓練1-7練習卷(解析版) 題型:選擇題
已知集合A=,B={x||x-1|≤1},則A∩B=( ).
A.{-1,0} B.{0,1} C.{0} D.{1}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com