若二次函數(shù)的圖象和直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:
①方程f[f(x)]=x一定沒有實(shí)數(shù)根;
②若a>0,則不等式f[f(x)]>x對(duì)一切實(shí)數(shù)x都成立;
③若a<0,則必存存在實(shí)數(shù)x,使f[f(x)]>x;
④若a+b+c=0,則不等式f[f(x)]<x對(duì)一切實(shí)數(shù)都成立;
⑤函數(shù)的圖象與直線y=-x也一定沒有交點(diǎn).
其中正確的結(jié)論是    (寫出所有正確結(jié)論的編號(hào)).
【答案】分析:由函數(shù)f(x)的圖象與直線y=x沒有交點(diǎn),所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.進(jìn)而逐一由此判斷①~⑤的真假即可得到答案.
解答:解:因?yàn)楹瘮?shù)f(x)的圖象與直線y=x沒有交點(diǎn),所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.
因?yàn)閒[f(x)]>f(x)>x或f[f(x)]<f(x)<x恒成立,所以f[f(x)]=x沒有實(shí)數(shù)根;
故①正確;
若a>0,則不等式f[f(x)]>f(x)>x對(duì)一切實(shí)數(shù)x都成立;
故②正確;
若a<0,則不等式f[f(x)]<x對(duì)一切實(shí)數(shù)x都成立,所以不存在x,使f[f(x)]>x
故③錯(cuò)誤;
若a+b+c=0,則f(1)=0<1,可得a<0,因此不等式f[f(x)]<x對(duì)一切實(shí)數(shù)x都成立;
故④正確;
易見函數(shù)g(x)=f(-x),與f(x)的圖象關(guān)于y軸對(duì)稱,所以g(x)和直線y=-x也一定沒有交點(diǎn).
故⑤正確;
故答案為:①②④⑤
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是命題的真假判斷與應(yīng)用,其中根據(jù)已知得到f(x)>x(a>0)或f(x)<x(a<0)恒成立是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省示范高中高三(上)第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

若二次函數(shù)的圖象和直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:
①方程f[f(x)]=x一定沒有實(shí)數(shù)根;
②若a>0,則不等式f[f(x)]>x對(duì)一切實(shí)數(shù)x都成立;
③若a<0,則必存存在實(shí)數(shù)x,使f[f(x)]>x
④若a+b+c=0,則不等式f[f(x)]<x對(duì)一切實(shí)數(shù)都成立;
⑤函數(shù)的圖象與直線y=-x也一定沒有交點(diǎn).
其中正確的結(jié)論是    (寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省示范高中高三(上)第一次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

若二次函數(shù)的圖象和直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:
①方程f[f(x)]=x一定沒有實(shí)數(shù)根;
②若a>0,則不等式f[f(x)]>x對(duì)一切實(shí)數(shù)x都成立;
③若a<0,則必存存在實(shí)數(shù)x,使f[f(x)]>x;
④若a+b+c=0,則不等式f[f(x)]<x對(duì)一切實(shí)數(shù)都成立;
⑤函數(shù)的圖象與直線y=-x也一定沒有交點(diǎn).
其中正確的結(jié)論是    (寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省示范高中高三(上)第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

若二次函數(shù)的圖象和直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:
①方程f[f(x)]=x一定沒有實(shí)數(shù)根;
②若a>0,則不等式f[f(x)]>x對(duì)一切實(shí)數(shù)x都成立;
③若a<0,則必存存在實(shí)數(shù)x,使f[f(x)]>x;
④若a+b+c=0,則不等式f[f(x)]<x對(duì)一切實(shí)數(shù)都成立;
⑤函數(shù)的圖象與直線y=-x也一定沒有交點(diǎn).
其中正確的結(jié)論是    (寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)的圖象和直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:

    ①方程一定沒有實(shí)數(shù)根;

    ②若a>0,則不等式對(duì)一切實(shí)數(shù)x都成立;

    ③若a<0,則必存在實(shí)數(shù),使;

    ④函數(shù)的圖象與直線y=-x一定沒有交點(diǎn),

    其中正確的結(jié)論是____________(寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案