【題目】如圖,在四面體中,平面,..M的中點,P的中點,點Q在線段上,且.

1)證明:;

2)若二面角的大小為60°,求的大小.

【答案】1)證明見解析(2

【解析】

(1)的中點為原點建立空間直角坐標系,設(shè)出C的坐標,然后算出的坐標,證明即可;

(2)算出平面的一個法向量,利用二面角的大小為60°求出C的坐標即可.

1)證明:如圖,取的中點O,以O為原點,,所在射線yz軸的正半軸,建立空間直角坐標系.

由題意知

設(shè)點C的坐標為,

因為

所以

因為點M的中點,故

又點P的中點,故

所以,

所以.

2)解:設(shè)為平面的一個法向量

,

,得.

又平面的一個法向量為,于是

.

,所以,

.

聯(lián)立①②,解得(舍去)或.

所以.

是銳角,所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,為坐標原點,是拋物線上異于的兩點.

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.若直線a,b與平面所成角都是30°,則這兩條直線平行

B.若直線a與平面、平面所成角相等,則

C.若平面內(nèi)不共線三點到平面的距離相等,則

D.已知二面角的平面角為120°Pl上一定點,則一定存在過點P的平面,使,所成銳二面角都為60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,,為等邊三角形,平面平面,中點.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高二年級的第二學期,因某學科的任課教師王老師調(diào)動工作,于是更換了另一名教師趙老師繼任.第二學期結(jié)束后從全學年的該門課的學生考試成績中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:

學校秉持均衡發(fā)展、素質(zhì)教育的辦學理念,對教師的教學成績實行績效考核,績效考核方案規(guī)定:每個學期的學生成績中與其中位數(shù)相差在范圍內(nèi)(含)的為合格,此時相應(yīng)的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時相應(yīng)的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時相應(yīng)的給教師賦分為-1分.

(Ⅰ)問王老師和趙老師的教學績效考核成績的期望值哪個大?

(Ⅱ)是否有的把握認為“學生成績?nèi)〉脙?yōu)秀與更換老師有關(guān)”.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓是長軸的一個端點,弦過橢圓的中心O,點C在第一象限,且.

1)求橢圓的標準方程;

2)設(shè)P、Q為橢圓上不重合的兩點且異于AB,若的平分線總是垂直于x軸,問是否存在實數(shù),使得?若不存在,請說明理由;若存在,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),把函數(shù)的圖象向右平移個單位,再把圖象上各點的橫坐標縮小到原來的一半,縱坐標不變,得到函數(shù)的圖象,當時,方程恰有兩個不同的實根,則實數(shù)的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某班學生喜好體育運動是否與性別有關(guān),對本班60人進行了問卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運動

不喜好體育運動

合計

男生

5

女生

10

合計

60

已知按喜好體育運動與否,采用分層抽樣法抽取容量為12的樣本,則抽到喜好體育運動的人數(shù)為7.

1)請將上面的列聯(lián)表補充完整;

2)能否在犯錯誤的概率不超過0.001的前提下認為喜好體育運動與性別有關(guān)?說明你的理由;

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,判斷函數(shù)的單調(diào)性;

2)若恒成立,求的取值范圍;

3)已知,證明.

查看答案和解析>>

同步練習冊答案