【題目】給出下列三個命題:

①若,則的逆命題;

②若,則的逆否命題;

③若,是奇數(shù),則、中一個是奇數(shù),一個是偶數(shù).

其中真命題的個數(shù)為(

A.B.C.D.

【答案】C

【解析】

寫出原命題的逆命題,并判斷其逆命題的真假,可判斷命題①的正誤;直接判斷原命題的真假,可得出其逆否命題的真假,可判斷命題②的正誤;直接判斷原命題的真假,可判斷命題③的正誤.綜合可得出結(jié)論.

對于命題①,原命題的逆命題為“若,則”,該命題為真命題,命題①為真命題;

對于命題②,命題“若,則”,其逆否命題也為真命題,命題②為真命題;

對于命題③,命題“若、是奇數(shù),則、中一個是奇數(shù),一個是偶數(shù)”,該命題為真命題,命題③為真命題.

因此,真命題的個數(shù)為.

故選:C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正三角形的邊長為2,是邊的中點,動點滿足,且,其中,則的最大值為( )

A.1B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖.四棱柱的底面是直角梯形,,,四邊形均為正方形.

1)證明;平面平面ABCD;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,是邊長為的正方形.且,點的中點.

1)求證:;

2)求平面與平面所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則下列命題正確的是______填上你認為正確的所有命題的序號

函數(shù)的單調(diào)遞增區(qū)間是函數(shù)的圖像關(guān)于點對稱;

函數(shù)的圖像向左平移個單位長度后,所得的圖像關(guān)于y軸對稱,m的最小值是;

若實數(shù)m使得方程上恰好有三個實數(shù)解,,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點到短軸的端點的距離為,離心率為

1)求橢圓的方程;

2)過點的直線交橢圓兩點,過點作平行于軸的直線,交直線于點,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設矩形的長為.

(1)設總造價(元)表示為長度的函數(shù);

(2)當取何值時,總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐,是梯形,,,

)證明:平面平面;

)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在正實數(shù),對于任意,都有,則稱函數(shù)上是有界函數(shù),下列函數(shù):

;②;③;④

其中在上是有界函數(shù)的序號為________.

查看答案和解析>>

同步練習冊答案