(坐標(biāo)系與參數(shù)方程)在直角坐標(biāo)系中,曲線C1的方程為
x=4t2
y=4t
(t為參數(shù)),若以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C2:ρcosθ=1與C1的交點(diǎn)之間的距離為
4
4
分析:參數(shù)方程化為普通方程,極坐標(biāo)方程化為直角坐標(biāo)方程,求出交點(diǎn)坐標(biāo),即可得到結(jié)論.
解答:解:曲線C1的方程為
x=4t2
y=4t
(t為參數(shù)),化為普通方程為y2=4x,曲線C2:ρcosθ=1,化為直角坐標(biāo)方程為x=1
兩方程聯(lián)立,可得交點(diǎn)坐標(biāo)為(1,2),(1,-2)
∴兩交點(diǎn)減的距離為4
故答案為:4
點(diǎn)評:本題考查參數(shù)方程與極坐標(biāo)方程,考查直線與曲線的交點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣A=
1a
-1b
,A的一個特征值λ=2,其對應(yīng)的特征向量是α1=
2
1

(Ⅰ)求矩陣A;
(Ⅱ)若向量β=
7
4
,計算A2β的值.

(2).選修4-4:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城二模)選修4-4:坐標(biāo)系與參數(shù)方程
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+
π3
),它們相交于A、B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(考生只能從A,B,C中選做一題,多做以所做第一題記分)
A.(不等式選做題)
已知a∈R,若關(guān)于x的方程x2+4x+|a-1|+|a+1|=0無實(shí)根,則a的取值范圍是
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

B.(幾何證明選做題)
如圖,CD是圓O的切線,切點(diǎn)為C,點(diǎn)A、B在圓O上,BC=1,∠BCD=30°,則圓O的面積為
π
π

C.(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,若過點(diǎn)(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)(1,-5),點(diǎn)M的極坐標(biāo)為(4,
π
2
)
,若直線l過點(diǎn)P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
(1)寫出直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•大連二模)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系xOy的坐標(biāo)原點(diǎn)O重合,極軸與x軸的非負(fù)半軸重合.曲線C1的參數(shù)方程為
x=-2+
10
cosθ
y=
10
sinθ
為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ+6sinθ.問曲線C1,C2是否相交,若相交請求出公共弦所在直線的方程,若不相交,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案