精英家教網 > 高中數學 > 題目詳情
若P(2,-1)為圓(x-1)2+y2=25的弦AB的中點,則直線AB的方程是(  )
A、x-y-3=0B、2x+y-3=0C、x+y-1=0D、2x-y-5=0
分析:由圓心為O(1,0),由點P為弦的中點,則該點與圓心的連線垂直于直線AB求解其斜率,再由點斜式求得其方程.
解答:解:已知圓心為O(1,0)
根據題意:Kop=
0+1
1-2
=-1

kABkOP=-1
kAB=1,又直線AB過點P(2,-1),
∴直線AB的方程是x-y-3=0
故選A
點評:本題主要考查直線與圓的位置關系及其方程的應用,主要涉及了弦的中點與圓心的連線與弦所在的直線垂直.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若P(2,1)為圓(x-1)2+y2=25的弦AB的中點,則直線的方程為( 。
A、x+y-1=0B、2x-y-5=0C、2x+y=0D、x+y-3=0

查看答案和解析>>

科目:高中數學 來源: 題型:

若P(2,-1)為圓x2+y2-2x-24=0的弦AB的中點,則直線AB的方程
x-y-3=0
x-y-3=0

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•長寧區(qū)一模)若P(2,-1)為圓(x-1)2+y2=r2(r>0)內,則r的取值范圍是
2
,+∞)
2
,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•紅橋區(qū)二模)若P(-2,1)為圓(x+1)2+y2=25的弦AB的中點,則直線AB的方程是( 。

查看答案和解析>>

同步練習冊答案