設(shè)ab是夾角為30°的異面直線,則滿足條件“,,且”的平面,     
A.不存在 B.有且只有一對(duì)C.有且只有兩對(duì)D.有無(wú)數(shù)對(duì)
 [D]
解 任作a的平面,可以作無(wú)數(shù)個(gè). 在b上任取一點(diǎn)M,過(guò)M的垂線. b
垂線確定的平面垂直于. 選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)在二面角的棱上,點(diǎn)內(nèi),且.若對(duì)于內(nèi)異于
的任意一點(diǎn),都有,則二面角的大小是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)如圖所示,已知三棱柱ABC-的底面邊長(zhǎng)均為2,側(cè)棱的長(zhǎng)為2且與底面ABC所成角為,且側(cè)面垂直于底面ABC.
(1)求二面角的正切值的大。
  (2)若其余條件不變,只改變側(cè)棱的長(zhǎng)度,當(dāng)側(cè)棱的長(zhǎng)度為多長(zhǎng)時(shí),可使面 和底面垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分,第Ⅰ小題4分,第Ⅱ小題5分,第Ⅲ小題3分)
如圖,是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直線與直線所成的角為60°.
(Ⅰ)求證:平面⊥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

平面的斜線于點(diǎn),過(guò)定點(diǎn)的動(dòng)直線垂直,且交于點(diǎn),則動(dòng)點(diǎn)的軌跡是
A.一條直線B.一個(gè)圓
C.一個(gè)橢圓D.雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱臺(tái)ABCD—A1B1C1D1中,下底ABCD是邊長(zhǎng)為2的正方形,上底A1B1C1D1是邊長(zhǎng)為1的正方形,側(cè)棱DD1⊥平面ABCD,DD1=2.
(1)求證:B1B//平面D1AC;
(2)求二面角B1—AD1—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

P為所在平面外一點(diǎn),PA、PB、PC與平面ABC所的角均相等,又PA與BC垂直,那么的形狀可以是      。
①正三角形②等腰三角形③非等腰三角形④等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將棱長(zhǎng)為3的正四面體的各棱長(zhǎng)三等分,經(jīng)過(guò)分點(diǎn)將原正四面體各頂點(diǎn)附近均截去  一個(gè)棱長(zhǎng)為1的小正四面體,則剩下的多面體的棱數(shù)E為    (    )
A.16B.17 C.18 D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在半徑為3的球面上有三點(diǎn),,球心到平面的距離是,則兩點(diǎn)的球面距離是(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案