已知△ABC的兩頂點(diǎn)B(-1,0),C(1,0),周長(zhǎng)為6
(1)求頂點(diǎn)A的軌跡L的方程;
(2)若關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)M,N在曲線L上,且已知G(-4,0),求
GM
GN
的取值范圍.
分析:(1)根據(jù)三角形的周長(zhǎng)和定點(diǎn),得到點(diǎn)A到兩個(gè)定點(diǎn)的距離之和等于定值,得到點(diǎn)A的軌跡是橢圓,橢圓的焦點(diǎn)在y軸上,寫(xiě)出橢圓的方程,去掉不合題意的點(diǎn).
解答:解:(1)∵△ABC的兩頂點(diǎn)B(-1,0),C(1,0),周長(zhǎng)為6,∴BC=2,AB+AC=4,
∵4>2,∴點(diǎn)A到兩個(gè)定點(diǎn)的距離之和等于定值,∴點(diǎn)A的軌跡是以B,C為焦點(diǎn)的橢圓,所以橢圓的標(biāo)準(zhǔn)方程是
x2
4
+
y2
3
=1(x≠±2)

(2)M,N關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,設(shè)M(x1 ,y1),N(-x1,-y1),
GM
=(x1+4,y1),
GN
=(-x1+4,-y1);
GM
GN
=-
x
2
1
-
y
2
1
+16

x
2
1
4
+
y
2
1
3
=1
y
2
1
=3-
3
4
x
2
1
,∴
GM
GN
=-
1
4
 
x
2
1
+13,
x
2
1
∈[0,4)
,∴
GM
GN
∈(12,13]
點(diǎn)評(píng):本題考查橢圓的定義,注意橢圓的定義中要檢驗(yàn)兩個(gè)線段的大小,看能不能構(gòu)成橢圓,本題是一個(gè)易錯(cuò)題,容易忽略掉不合題意的點(diǎn)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的兩頂點(diǎn)A、C是橢圓
x2
25
+
y2
9
=1的二個(gè)焦點(diǎn),頂點(diǎn)B在橢圓上,則
sinB
sinA+sinC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的兩頂點(diǎn)A、B分別是雙曲線2x2-2y2=1的左、右焦點(diǎn),且sinC是sinA、sinB的等差中項(xiàng).
(Ⅰ)求頂點(diǎn)C的軌跡T的方程;
(Ⅱ)設(shè)P(-2,0),M、N是軌跡T上不同兩點(diǎn),當(dāng)PM⊥PN時(shí),證明直線MN恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△ABC的兩頂點(diǎn)B(-1,0),C(1,0),周長(zhǎng)為6
(1)求頂點(diǎn)A的軌跡L的方程;
(2)若關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)M,N在曲線L上,且已知G(-4,0),求數(shù)學(xué)公式數(shù)學(xué)公式的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年數(shù)學(xué)寒假作業(yè)(09)(解析版) 題型:填空題

已知△ABC的兩頂點(diǎn)A、C是橢圓=1的二個(gè)焦點(diǎn),頂點(diǎn)B在橢圓上,則=   

查看答案和解析>>

同步練習(xí)冊(cè)答案