若函數(shù)f(x)=-+blnx在(1,+∞)上是減函數(shù),求實(shí)數(shù)b的取值范圍.
b≤1
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)若函數(shù)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(2)當(dāng)a=1時(shí),求函數(shù)在區(qū)間[t,t+3]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a∈R).
(1)若曲線(xiàn)y=f(x)在x=1和x=3處的切線(xiàn)互相平行,求a的值;
(2)當(dāng)a≤0時(shí),求f(x)的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明對(duì)一切x∈(0,+∞),都有l(wèi)nx>-成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在F1賽車(chē)中,賽車(chē)位移與比賽時(shí)間t存在函數(shù)關(guān)系s=10t+5t2(s的單位為m,t的單位為s).求:
(1)t=20s,Δt=0.1s時(shí)的Δs與;
(2)t=20s時(shí)的瞬時(shí)速度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x3-3ax2+2bx在點(diǎn)x=1處有極小值-1.
(1)求a、b;
(2)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),(a為實(shí)數(shù)).
(1) 當(dāng)a=5時(shí),求函數(shù)在處的切線(xiàn)方程;
(2) 求在區(qū)間()上的最小值;
(3) 若存在兩不等實(shí)根,使方程成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿(mǎn)足f′(1)=
2a,f′(2)=-b,其中a,b∈R.
①求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;②設(shè)g(x)=f′(x)e-x,求g(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在處取得極小值.
(1)若函數(shù)的極小值是,求;
(2)若函數(shù)的極小值不小于,問(wèn):是否存在實(shí)數(shù),使得函數(shù)在上單調(diào)遞減?若存在,求出的范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com