【題目】在平面直角坐標(biāo)系 中,曲線 的參數(shù)方程為 ( 為參數(shù)),在以 為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線 是圓心為 ,半徑為1的圓.
(1)求曲線 , 的直角坐標(biāo)方程;
(2)設(shè) 為曲線 上的點(diǎn), 為曲線 上的點(diǎn),求 的取值范圍.
【答案】
(1)解:消去參數(shù) 可得 的直角坐標(biāo)方程為 .
曲線 的圓心的直角坐標(biāo)為 ,
∴ 的直角坐標(biāo)方程為
(2)解:設(shè) ,
則
.
∵ ,∴ , .
根據(jù)題意可得 , ,
即 的取值范圍是 .
【解析】(1)通過消去參數(shù) φ即可得C1直角坐標(biāo)方程,由題意可得C2的圓心直角坐標(biāo)為(0,3),代入公式可得C2的直角坐標(biāo)方程.
(2)通過設(shè) 點(diǎn) M ( 2 c o s φ , s i n φ ),可得兩點(diǎn)間距離公式可得| M C2|,由 1 ≤ sin φ ≤ 1可得| M C 2|的最大和最小值,從而可以得到 | M N | 的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐 中, ,平面 平面 , 、 分別為 、 的中點(diǎn).
(1)求證: 平面 ;
(2)求證: ;
(3)求三棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 : 的焦點(diǎn)為 ,過點(diǎn) 分別作兩條直線 , ,直線 與拋物線 交于 、 兩點(diǎn),直線 與拋物線 交于 、 兩點(diǎn),若 與 的斜率的平方和為1,則 的最小值為( )
A.16
B.20
C.24
D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),給出下列命題:
①若函數(shù)f(x)是R上周期為3的偶函數(shù),且滿足f(1)=1,則f(2)-f(-4)=0;
②若函數(shù)f(x)滿足f(x+1)f(x)=2 017,則f(x)是周期函數(shù);
③若函數(shù)g(x)= 是偶函數(shù),則f(x)=x+1;
④函數(shù)y= 的定義域為 .
其中正確的命題是 . (寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點(diǎn)G是△ABO的重心.
(1)求 + + ;
(2)若PQ過△ABO的重心G,且 = , = , =m , =n ,求證: + =3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= x2-mln x,g(x)=x2-(m+1)x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)m≥0時,討論函數(shù)f(x)與g(x)圖象的交點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在 上的函數(shù) 滿足 ,且 是偶函數(shù),當(dāng) 時, .令 ,若在區(qū)間 內(nèi),函數(shù) 有4個不相等實根,則實數(shù) 的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com