定義在R上的函數(shù)f(x)滿足:f(x)的圖象關(guān)于y軸對(duì)稱,并且對(duì)任意的x1,x2∈(-∞,0](x1≠x2)有(x1-x2)(f(x1)-f(x2))>0.則當(dāng)n∈N﹡時(shí),有( )
A.f(n+1)<f(-n)<f(n-1)
B.f(n-1)<f(-n)<f(n+1)
C.f(-n)<f(n-1)<f(n+1)
D.f(n+1)<f(n-1)<f(-n)
【答案】分析:可得函數(shù)在區(qū)間(-∞,0]單調(diào)遞增,[0,+∞)單調(diào)遞減,故誰(shuí)離遠(yuǎn)點(diǎn)近誰(shuí)的函數(shù)值大,由絕對(duì)值的意義可得.
解答:解:由題意可得函數(shù)f(x)為偶函數(shù),且在區(qū)間(-∞,0]單調(diào)遞增,
故在區(qū)間[0,+∞)單調(diào)遞減,故只需比較自變量的絕對(duì)值大小即可,
當(dāng)n∈N﹡時(shí),有|n+1|>|-n|>|n-1|,
故有f(n+1)<f(-n)<f(n-1)
故選A
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性和奇偶性,涉及絕對(duì)值的意義,屬基礎(chǔ)題.