(本小題滿分12分)
某工廠修建一個(gè)長(zhǎng)方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的 造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長(zhǎng)方形長(zhǎng)為米.
(1)求底面積,并用含的表達(dá)式表示池壁面積;
(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?
(1)池壁面積為(平方米);
(2)池底設(shè)計(jì)為邊長(zhǎng)40米的正方形時(shí)總造價(jià)最低,為297600元。

試題分析:(Ⅰ)分析題意,本小題是一個(gè)建立函數(shù)模型的問題,可設(shè)水池的底面積為S1,池壁面積為S2,由題中所給的關(guān)系,將此兩者用池底長(zhǎng)方形長(zhǎng)x表示出來.
(Ⅱ)此小題是一個(gè)花費(fèi)最小的問題,依題意,建立起總造價(jià)的函數(shù)解析式,由解析式的結(jié)構(gòu)發(fā)現(xiàn),此函數(shù)的最小值可用基本不等式求最值,從而由等號(hào)成立的條件求出池底邊長(zhǎng)度,得出最佳設(shè)計(jì)方案
解:(1)由題意水池底面積為(平方米)                 3分
池壁面積為(平方米)                     6分
(2)設(shè)水池總造價(jià)為元,則
              10分
當(dāng)且僅當(dāng)時(shí)取等號(hào)。
故池底設(shè)計(jì)為邊長(zhǎng)40米的正方形時(shí)總造價(jià)最低,為297600元。                   12分
點(diǎn)評(píng):解題的關(guān)鍵是建立起符合條件的函數(shù)模型,故分析清楚問題的邏輯聯(lián)系是解決問題的重點(diǎn),此類問題的求解的一般步驟是:建立函數(shù)模型,進(jìn)行函數(shù)計(jì)算,得出結(jié)果,再將結(jié)果反饋到實(shí)際問題中指導(dǎo)解決問題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)是定義域R上的奇函數(shù),且當(dāng)時(shí),則當(dāng)時(shí), ____________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則的值等于   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

 設(shè)定在R上的函數(shù)滿足:,則
         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,在區(qū)間上為增函數(shù)的是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

長(zhǎng)為6米、寬為4米的矩形,當(dāng)長(zhǎng)增加米,且寬減少米時(shí)面積最大,此時(shí)寬減少了________米,面積取得了最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),正實(shí)數(shù)滿足,且,若在區(qū)間上的最大值為2,則的值為(  )
A.    B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將函數(shù)的圖像向左平移2個(gè)單位得到函數(shù)的圖像,則函數(shù)的解析表達(dá)式為                .

查看答案和解析>>

同步練習(xí)冊(cè)答案