在等差數(shù)列{an}中a1=-13,公差d=
2
3
,則當前n項和sn取最小值時n的值是______.
在等差數(shù)列{an}中,由a1=-13,公差d=
2
3
,得
Sn=na1+
n(n-1)d
2

=-13n+
2
3
n(n-1)
2
=
1
3
(n2-40n)

=
1
3
(n-20)2-
400
3

當且僅當n=20時,(Sn)min=-
400
3

∴當前n項和sn取最小值時n的值是20.
故答案為:20.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn,且Sn=(m+1)-man 對任意正整數(shù)n都成立,其中m為常數(shù),且m<-1.
(1)求證:{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比q=f(m),數(shù)列{bn}滿足:b1=a1,bn=f(bn1)(n≥2,n∈N*). 試問當m為何值時,成立?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列{an}的通項公式為an=2n-19,當Sn取到最小時,n=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列前n項和為Sn=n2+3n
(1)寫出數(shù)列的前5項;
(2)求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項和為Sn,若m>1,且am-1+am+1-am2=0,S2m-1=38,則m等于( 。
A.38B.20C.10D.9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列{an}中,a1=12,且3a8=5a13,則Sn中最大的是( 。
A.S20B.S21C.S10D.S11

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知{an}為等差數(shù)列,且a3=5,a7=2a4-1.
(Ⅰ)求數(shù)列{an}的通項公式及其前n項和Sn
(Ⅱ)若數(shù)列{bn}滿足b1+4b2+9b3+…+n2bn=an求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)的值為( 。
A.18B.17C.16D.15

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)正數(shù)a,b滿足, 則( )
A.0B.C.D.1

查看答案和解析>>

同步練習冊答案