有甲、乙、丙、丁四名深圳大運會志愿者被隨機地分到A,B,C三個不同的崗位服務,若A崗位需要兩名志愿者,B,C崗位各需要一名志愿者。甲、乙兩人同時不參加A崗位服務的概率是 ;甲不在A崗位,乙不在B崗位,丙不在C崗位,這樣安排服務的概率是 。
,
解析試題分析:設對不同志愿者的安排按順序對應三個不同的崗位,則崗位A需要兩名志愿者,崗位B.C各需要一名志愿者的所有可能的結果為:(甲乙、丙、丁),(甲乙、丁、丙), (甲丙、乙、丁),(甲丙、丁、乙), (甲丁、乙、丙), (甲丁、丙、乙), (乙丙、甲、丁),(乙丙、丁、甲), (乙丁、甲、丙), (乙丁、丙、甲), (丙丁、甲、乙), (丙丁、乙、甲), 共有12種不同的情況,每種基本事件的可能性相同,是古典概型的概率問題,所以
設甲、乙兩人同時不參加A崗位服務的事件為M,則它的對立事件,即甲、乙同在A崗位有 (甲乙、丙、丁),(甲乙、丁、丙),共2種不同情況,所以概率為其中甲不在A崗位,乙不在B崗位,丙不在C崗位的情況有4種,所以概率為
考點:本小題主要考查古典概型概率的求解.
點評:求解古典概型概率時,要保證每個基本實際都是等可能的.
科目:高中數(shù)學 來源: 題型:填空題
將7個不同的小球全部放入編號為2 和3 的兩個小盒子里,使得每個盒子里的球的個數(shù)不小于盒子的編號,則不同的放球方法共有____________ 種(用數(shù)字作答) .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
現(xiàn)有5種不同顏色的染料,要對如圖中的四個不同區(qū)域進行著色,要求有公共邊的兩塊區(qū)域不能使用同一種顏色,則不同的著色方法的種數(shù)是 種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
有9本不同的課外書,分給甲、乙、丙三名同學,求在下列條件下,各有多少種分法?
(1)甲得4本,乙得3本,丙得2本;
(2)一人得4本,一人得3本,一人得2本;
(3)甲、乙、丙各得3本.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com