直線l過點P(2,1),按下列條件求直線l的方程.

(1)直線l與直線x-y+1=0的夾角為;

(2)直線l與兩坐標軸正向圍成的三角形面積為4.

解:(1)利用夾角公式求得直線l的斜率為k=-2-或k=-2+.

所求直線l的方程為x+(2-)y-4+=0和x+(2+)y-4-=0.

(2)易得x+2y-4=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點P(2,1),且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,則△OAB面積的最小值為_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點P(2,1),且分別與x軸、y軸的正半軸交于點A、B,O是坐標原點,

(1)當△AOB面積最小時,求直線l的方程;

(2)當|PA|·|PB|取最小值時,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點p(2,1),且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,則三角形OAB面積的最小值為__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點P(2,1),按下列條件求直線l的方程

(1)直線l與直線x-y+1=0的夾角為;

(2)直線l與兩坐標軸正半軸圍成三角形面積為4。

查看答案和解析>>

同步練習(xí)冊答案