已知拋物線P:x2=2py (p>0).
(Ⅰ)若拋物線上點到焦點F的距離為.
(ⅰ)求拋物線的方程;
(ⅱ)設拋物線的準線與y軸的交點為E,過E作拋物線的切線,求此切線方程;
(Ⅱ)設過焦點F的動直線l交拋物線于A,B兩點,連接,并延長分別交拋物線的準線于C,D兩點,求證:以CD為直徑的圓過焦點F.
解:(Ⅰ)(ⅰ)由拋物線定義可知,拋物線上點到焦點F的距離與到準線距離相等,
即到的距離為3;
∴ ,解得.
∴ 拋物線的方程為. ………………4分
(ⅱ)拋物線焦點,拋物線準線與y軸交點為,
顯然過點的拋物線的切線斜率存在,設為,切線方程為.
由, 消y得, ………………6分
,解得. ………………7分
∴切線方程為. ………………8分
(Ⅱ)直線的斜率顯然存在,設:,
設,,
由 消y得 . 且.
∴ ,;
∵ , ∴ 直線:,
與聯(lián)立可得, 同理得.……………10分
∵ 焦點,
∴ ,, ………………12分
∴
∴ 以為直徑的圓過焦點. ………………14分
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年北京市豐臺區(qū)高三年級第二學期統(tǒng)一練習理科數(shù)學 題型:解答題
(本小題共14分)
已知拋物線P:x2=2py (p>0).
(Ⅰ)若拋物線上點到焦點F的距離為.
(。┣髵佄锞的方程;
(ⅱ)設拋物線的準線與y軸的交點為E,過E作拋物線的切線,求此切線方程;
(Ⅱ)設過焦點F的動直線l交拋物線于A,B兩點,連接,并延長分別交拋物線的準線于C,D兩點,求證:以CD為直徑的圓過焦點F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題共14分)
已知拋物線P:x2=2py (p>0).
(Ⅰ)若拋物線上點到焦點F的距離為.
(。┣髵佄锞的方程;
(ⅱ)設拋物線的準線與y軸的交點為E,過E作拋物線的切線,求此切線方程;
(Ⅱ)設過焦點F的動直線l交拋物線于A,B兩點,連接,并延長分別交拋物線的準線于C,D兩點,求證:以CD為直徑的圓過焦點F.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年北京43中高三(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com