已知,
求證:.

根據(jù)線線垂直來證明線面垂直,是一般的證明線面垂直的方法之一,該試題只要證明即可。

解析試題分析:證明:  
  




考點(diǎn):線面垂直
點(diǎn)評(píng):主要是考查了三棱錐性質(zhì)的運(yùn)用,以及線面垂直的判定證明,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,平面平面,. 過點(diǎn),垂足為,點(diǎn),分別為棱,的中點(diǎn).

求證:(1)平面平面
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱中,平面,底面是邊長(zhǎng)為1的正方形,側(cè)棱,


(Ⅰ)證明:;
(Ⅱ)若棱上存在一點(diǎn),使得
當(dāng)二面角的大小為時(shí),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是一個(gè)直三棱柱(以A1B1C1為底面)被一平面
所截得到的幾何體,截面為ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且設(shè)點(diǎn)O是AB的中點(diǎn)。

(1)證明:OC∥平面A1B1C1;
(2)求異面直線OC與AlBl所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個(gè)全等的等腰直角三角形,O為BD的中點(diǎn),且AB=AD=CB=CD=2,AC=

(1)當(dāng)時(shí),求證:AO⊥平面BCD;
(2)當(dāng)二面角的大小為時(shí),求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在多面體中,四邊形是邊長(zhǎng)為2的正方形,平面平面,平面都與平面垂直,且、、都是正三角形。

(1)求證:;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(Ⅰ) 證明:PA⊥BD;
(Ⅱ) 若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知斜三棱柱,側(cè)面與底面垂直,∠,,且,.

(1)試判斷與平面是否垂直,并說明理由;
(2)求側(cè)面與底面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分別是CC1,AB的中點(diǎn).

(1)求證:CN⊥AB1;
(2)求證:CN//平面AB1M.

查看答案和解析>>

同步練習(xí)冊(cè)答案