(2012•藍(lán)山縣模擬)為了加快經(jīng)濟(jì)的發(fā)展,某省選擇A、B兩城市作為龍頭帶動(dòng)周邊城市的發(fā)展,決定在A、B兩城市的周邊修建城際輕軌,假設(shè)10km為一個(gè)單位距離,A、B兩城市相距8個(gè)單位距離,設(shè)城際輕軌所在的曲線為E,使輕軌E上的點(diǎn)到A、B兩市的距離之和為10個(gè)單位距離.
(1)建立直角坐標(biāo)系,求城際輕軌所在曲線E的方程;
(2)若要在曲線E上建一個(gè)加油站M與一個(gè)收費(fèi)站N,使M、N、B三點(diǎn)在一條直線上,并且AM+AN=12個(gè)單位距離,求M、N之間的距離有多少個(gè)單位距離?
(3)在A、B兩城市之間有一條與AB所在直線成45°的筆直公路l,直線l與曲線E交于P,Q兩點(diǎn),求四邊形PAQB的面積的最大值.
分析:(1)以AB為x軸,以AB中點(diǎn)為原點(diǎn)O建立直角坐標(biāo)系.設(shè)曲線E上點(diǎn)P(x,y),由|PA|+|PB|=10>|AB|=8,能求出曲線E的方程.
(2)由|AM|+|AN|+|BM|+|BN|=20,|AM|+|AN|=12,知|MN|=8.
(3)將y=x+t代入
x2
25
+
y2
9
=1,得34y2-18ty+9t2-25×9=0.設(shè)P(x1,y1)、Q(x2,y2),則y1+y2=
9t
17
,y1y2=
9t2-25×9
34
.由此能求出當(dāng)t=0時(shí),面積最大是
60
17
34
,此時(shí)直線為l:y=x.
解答:解:(1)以AB為x軸,以AB中點(diǎn)為原點(diǎn)O建立直角坐標(biāo)系.
設(shè)曲線E上點(diǎn)P(x,y),
∵|PA|+|PB|=10>|AB|=8
∴動(dòng)點(diǎn)軌跡為橢圓,
且a=5,c=4,從而b=3.
∴曲線E的方程為
x2
25
+
y2
9
=1.(4分)
(2)∵|AM|+|AN|+|BM|+|BN|=20,
|AM|+|AN|=12,
所以|MN|=8.(8分)
(3)將y=x+t代入
x2
25
+
y2
9
=1,
得34y2-18ty+9t2-25×9=0.
設(shè)P(x1,y1)、Q(x2,y2),
則y1+y2=
9t
17
,y1y2=
9t2-25×9
34

|y1-y2|=
(y1+y2)2-4y1y2
=
1
17
50×9×17-9×25t2
,
S=S△ABP+S△ABQ=
1
2
AB•|y1-y2|=
8
34
50×9×17-9×25t2
,
所以當(dāng)t=0時(shí),面積最大是
60
17
34
,
此時(shí)直線為l:y=x.(13分)
點(diǎn)評(píng):本題主要考查橢圓標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí).考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•藍(lán)山縣模擬)已知m是一個(gè)給定的正整數(shù),如果兩個(gè)整數(shù)a,b被m除得的余數(shù)相同,則稱a與b對(duì)模m同余,記作a≡b(modm),例如:5≡13(mod4).若22010≡r(mod7),則r可以為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案