已知集合P={xN|1≤x≤10},集合Q={x|x2 +x-6=0},.則P Q等于

(A){-2,3}           (B){-3,2}           (C){3}       (D){2}

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合Sn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2)對(duì)于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2|,…|an-bn|);
A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)證明:?A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅱ)證明:?A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個(gè)數(shù)中至少有一個(gè)是偶數(shù)
(Ⅲ)設(shè)P⊆Sn,P中有m(m≥2)個(gè)元素,記P中所有兩元素間距離的平均值為
.
d
(P)

證明:
.
d
(P)
mn
2(m-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化三模)已知集合Sn={X|X=(x1,x2,…,xn),xi∈N*,i=1,2,…,n}(n≥2).對(duì)于A=(a1,a2,…an)∈Sn,B=(b1,b2,…,bn)∈Sn,A與B之間的距離為d(A,B)=
ni=1
|ai-bi|

(1)當(dāng)n=5時(shí),設(shè)A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,則a5
=1或5
=1或5
;
(2)記I=(1,1,…,1)∈sn.若A、B∈Sn,且d(I,A)=d(I,B)=P,則d(A,B)的最大值為
2P
2P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)一模)已知集合Sn={X|X=(x1,x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對(duì)于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1,b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當(dāng)n=5時(shí),設(shè)A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)(。┳C明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(ⅱ)設(shè)A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?說明理由;
(Ⅲ)記I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆甘肅省天水市高二上學(xué)期期末考數(shù)文科數(shù)學(xué) 題型:選擇題

已知集合P={x︳1≤x≤10,xN},集合Q={x︳≤0,xR},則P∩Q=(    )

A.{2}          B. {1,2}         C. {2,3}         D. {1,2,3}

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案