設(shè)F1、F2是雙曲線x2-y2=4的兩焦點(diǎn),Q是雙曲線上任意一點(diǎn),從F1 引∠F1QF2平分線的垂線,垂足為P,則點(diǎn)P的軌跡方程是
x2+y2=4
x2+y2=4
分析:點(diǎn)F1關(guān)于∠F1PF2的角平分線PQ的對(duì)稱點(diǎn)M在直線PF2的延長(zhǎng)線上,故|F2M|=|PF1|-|PF2|=4,又OQ是△F2F1M的中位線,推出|OM|=2,由此可以求出點(diǎn)M的軌跡方程.
解答:解:點(diǎn)F1關(guān)于∠F1QF2的角平分線PQ的對(duì)稱點(diǎn)M在直線PF2的延長(zhǎng)線上,
故|F2M|=|QF1|-|QF2|=4,
又OP是△F2F1M的中位線,
故|OP|=2,
點(diǎn)P的軌跡是以原點(diǎn)為圓心,2為半徑的圓一部分,
則點(diǎn)P的軌跡方程為x2+y2=4.
故答案為:x2+y2=4.
點(diǎn)評(píng):本小題主要考查軌跡方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題,解答關(guān)鍵是應(yīng)用角分線的性質(zhì)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,若
PF1
PF2
=0 且|
PF1
||
PF2
|=2ac(c=
a2+b2
),則雙曲線的離心率為( 。
A、
1+
5
2
B、
1+
3
2
C、2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•寶山區(qū)模擬)雙曲線C:
x2
a2
-
y2
b2
=1
上一點(diǎn)(2,
3
)
到左,右兩焦點(diǎn)距離的差為2.
(1)求雙曲線的方程;
(2)設(shè)F1,F(xiàn)2是雙曲線的左右焦點(diǎn),P是雙曲線上的點(diǎn),若|PF1|+|PF2|=6,求△PF1F2的面積;
(3)過(guò)(-2,0)作直線l交雙曲線C于A,B兩點(diǎn),若
OP
=
OA
+
OB
,是否存在這樣的直線l,使OAPB為矩形?若存在,求出l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2是雙曲線x2-
y224
=1
的兩個(gè)焦點(diǎn),是雙曲線上的一點(diǎn),且3|PF1|=4|PF2|,則△PF1F2的面積等于
24
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌三模)設(shè)F1,F(xiàn)2是雙曲線
x2
3
-y2=1
的兩個(gè)焦點(diǎn),P在雙曲線上,當(dāng)△F1PF2的面積為2時(shí),
PF1
PF2
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右兩個(gè)焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使(
OP
+
OF2
)•
F2P
=0
(O為坐標(biāo)原點(diǎn)),且tan∠PF2F1=2,則雙曲線的離心率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案