已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為.過點(diǎn)
作直線交拋物線兩點(diǎn)(在第一象限內(nèi)).
(1)若與焦點(diǎn)重合,且.求直線的方程;
(2)設(shè)關(guān)于軸的對稱點(diǎn)為.直線軸于. 且.求點(diǎn)到直線的距離的取值范圍.

(1)  ;(2)

解析試題分析:(1) 首先求出拋物線 再與 聯(lián)立得到關(guān)于x的一元二次方程,最后利用焦半徑公式求出斜率即可.(2)先求出,進(jìn)而轉(zhuǎn)換為,再由l與C聯(lián)立得,借助于根與系數(shù)的關(guān)系求出m的取值范圍,然后由點(diǎn)到直線的距離公式得到d的表達(dá)式,最后根據(jù)基本不等式求出范圍.
由題
(1)A與下重合,則 設(shè)
又由焦半徑公式有
可求  ∴.
所求直線為:
(2)可求.故△BQM為等腰直角三角形,設(shè)
. 即.
設(shè) ∴
從而, 即, 又.
.
點(diǎn)到直線的距離為


考點(diǎn):拋物線的性質(zhì);焦半徑公式;根與系數(shù)的關(guān)系;點(diǎn)到直線的距離公式;基本不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△ABC的周長為12,頂點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),C為動(dòng)點(diǎn).
(1)求動(dòng)點(diǎn)C的軌跡E的方程;
(2)過原點(diǎn)作兩條關(guān)于y軸對稱的直線(不與坐標(biāo)軸重合),使它們分別與曲線E交于兩點(diǎn),求四點(diǎn)所對應(yīng)的四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的三個(gè)頂點(diǎn)在拋物線上,為拋物線的焦點(diǎn),點(diǎn)的中點(diǎn),;
(1)若,求點(diǎn)的坐標(biāo);
(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)有雙曲線,F1,F2是其兩個(gè)焦點(diǎn),點(diǎn)M在雙曲線上.
(1)若∠F1MF2=90°,求△F1MF2的面積;
(2)若∠F1MF2=60°,△F1MF2的面積是多少?若∠F1MF2=120°,△F1MF2的面積又是多少?
(3)觀察以上計(jì)算結(jié)果,你能看出隨∠F1MF2的變化,△F1MF2的面積將怎樣變化嗎?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓.
(1)求橢圓的離心率;
(2)設(shè)為原點(diǎn),若點(diǎn)在橢圓上,點(diǎn)在直線上,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為,上頂點(diǎn)為B,拋物線分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,相交于 直線上一點(diǎn)P.
(1)求橢圓C及拋物線的方程;
(2)若動(dòng)直線與直線OP垂直,且與橢圓C交于不同的兩點(diǎn)M,N,已知點(diǎn),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)F1是橢圓的左焦點(diǎn),C是橢圓上的任一點(diǎn),證明:;
(3)過且與AB垂直的直線交橢圓于P、Q,若的面積是20 ,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心在坐標(biāo)原點(diǎn),且恰好與直線相切,設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),軸于點(diǎn),且動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點(diǎn),求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過拋物線的頂點(diǎn)作射線與拋物線交于,若,求證:直線過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案