已知等差數(shù)列{a
n}中,公差d>0,其前n項和為S
n,且滿足:a
2•a
3=45,a
1+a
4=14.
(1)求數(shù)列{a
n}的通項公式;
(2)令
bn=,f(n)=
(n∈N
*),求f(n)的最大值.
(Ⅰ)∵數(shù)列a
n}是等差數(shù)列,
∴a
2•a
3=45,a
1+a
4=a
2+a
3=14.
∴
或.
∵公差d>0,
∴
,解得d=4,a
1=1.
∴a
n=1+4(n-1)=4n-3.
(Ⅱ)∵
Sn=na1+=2n2-n,
∴
bn==2n,
∴f(n)=
=
==≤==.
當且僅當
n=,即n=5時,f(n)取得最大值
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
數(shù)列{an}是等差數(shù)列,Sn是前n項和,a4=3,S5=25
(1)求數(shù)列{an}的通項公式an.
(2)設bn=|an|,求b1+b2+…+bn.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
根據(jù)程序框圖,將輸出的x,y值依次分別記為x
1,x
2,…,x
2013;y
1,y
2,…,y
2013(Ⅰ)寫出數(shù)列{x
n}的遞推公式,求{x
n}的通項公式;
(Ⅱ)寫出數(shù)列{y
n}的遞推公式,求{y
n}的通項公式;
(Ⅲ)求數(shù)列{x
n+y
n}的前n項和S
n(n≤2013).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列{a
n}滿足對任意的n∈N
+,都有a
n>0,且a
13+a
23+…+a
n3=(a
1+a
2+…+a
n)
2.
(1)求數(shù)列{a
n}的通項公式a
n;
(2)設數(shù)列{
}的前n項和為S
n,不等式S
n>
log
a(1-a)對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列{an}滿足a3=6,a4+a6=20
(1)求通項an;
(2)設{bn-an}是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項公式及其前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設遞增等比數(shù)列{a
n}的前n項和為S
n,且a
2=3,S
3=13,數(shù)列{b
n}滿足b
1=a
1,點P(b
n,b
n+1)在直線x-y+2=0上,n∈N
*.
(Ⅰ)求數(shù)列{a
n},{b
n}的通項公式;
(Ⅱ)設c
n=
,數(shù)列{c
n}的前n項和T
n,若T
n>2a-1恒成立(n∈N
*),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知不等式x2-2x-3<0的整數(shù)解由小到大構成數(shù)列{an}前三項,若數(shù)列{an+2a2}的前n項和為Sn,則Sn=______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設數(shù)列{a
n},a
n≠0,a
1=
,若以a
n-1,a
n為系數(shù)的二次方程:a
n-1x
2+a
nx-1=0(n≥2,n∈N
*)都有兩個不同的根α,β滿足3α-αβ+3β+1=0
(1)求證:
{an-}為等比數(shù)列;
(2)求{a
n}的通項公式并求前n項和S
n.
查看答案和解析>>