設(shè)點(diǎn)為平面直角坐標(biāo)系xOy中的一個動點(diǎn)(其中O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)M(0,)的距離比點(diǎn)Px軸的距離大

(1)求點(diǎn)P的軌跡方程;

(2)若直線與點(diǎn)P的軌跡相交于A、B兩點(diǎn),求線段AB的長;

(3)設(shè)點(diǎn)P的軌跡是曲線C,點(diǎn)Q(1,y0)是曲線C上一點(diǎn),求過點(diǎn)Q的曲線C的切線方程。

解:(1)用直接法或定義法求得點(diǎn)P軌跡方程為

(2)聯(lián)立

設(shè)

(3)曲線C即函數(shù)

故所求切線方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年貴陽市適應(yīng)性考試) 設(shè)點(diǎn)為平面直角坐標(biāo)系中的一個動點(diǎn)(其中o為坐標(biāo)原點(diǎn)),點(diǎn)到定點(diǎn)的距離比點(diǎn)軸的距離大。

  (1)求點(diǎn)的軌跡方程,并說明它表示什么曲線

  (2)若直線與點(diǎn)的軌跡相交于兩點(diǎn),且,點(diǎn)o到直線的距離為,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽懷遠(yuǎn)縣包集中學(xué)高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

設(shè)點(diǎn)為平面直角坐標(biāo)系中的一個動點(diǎn)(其中O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)的距離比點(diǎn)P到軸的距離大.

 (1)求點(diǎn)P的軌跡方程;

   (2)若直線與點(diǎn)P的軌跡相交于A、B兩點(diǎn),且,求的值.

   (3)設(shè)點(diǎn)P的軌跡是曲線C,點(diǎn)是曲線C上的一點(diǎn),求以Q為切點(diǎn)的曲線C 的切線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆湖北省洪湖市四校高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)點(diǎn)為平面直角坐標(biāo)系中的一個動點(diǎn)(其中O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)的距離比點(diǎn)P到軸的距離大

(1)求點(diǎn)P的軌跡方程。

(2)若直線與點(diǎn)P的軌跡相交于A、B兩點(diǎn),且,求的值。

(3)設(shè)點(diǎn)P的軌跡是曲線C,點(diǎn)是曲線C上的一點(diǎn),求以Q為切點(diǎn)的曲線C 的切線方程。

【解析】本試題主要考查了軌跡方程的求解,利用直接法設(shè)點(diǎn)表示軌跡方程,并能利用所求的軌跡進(jìn)行直線與圓錐曲線位置關(guān)系的運(yùn)用。以及導(dǎo)數(shù)的幾何意義的運(yùn)用的綜合試題。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆安徽省亳州市高二第二學(xué)期期末質(zhì)量檢測文科數(shù)學(xué)試題 題型:解答題

設(shè)點(diǎn)為平面直角坐標(biāo)系中的一個動點(diǎn)(其中O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)的距離比點(diǎn)P到軸的距離大。

(1)求點(diǎn)P的軌跡方程。

(2)若直線與點(diǎn)P的軌跡相交于A、B兩點(diǎn),且,求的值。

(3)設(shè)點(diǎn)P的軌跡是曲線C,點(diǎn)是曲線C上的一點(diǎn),求以Q為切點(diǎn)的曲線C 的切線方程。

【解析】本試題主要考查了軌跡方程的求解,利用直接法設(shè)點(diǎn)表示軌跡方程,并能利用所求的軌跡進(jìn)行直線與圓錐曲線位置關(guān)系的運(yùn)用。以及導(dǎo)數(shù)的幾何意義的運(yùn)用的綜合試題。

 

查看答案和解析>>

同步練習(xí)冊答案