已知函數(shù)f(x)=sin
x
3
cos
x
3
+
3
(1-sin2
x
3
)

(1)將f(x)寫成Asin(ωx+φ)+B的形式,并求其圖象對稱軸的方程;
(2)如果△ABC的三邊a、b、c的長成等比數(shù)列,且邊b所對的角為x,試求x的范圍及此時函數(shù)f(x)的值域.
分析:(1)利用二倍角公式以及兩角和的正弦函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,結(jié)合正弦函數(shù)的對稱中心、對稱軸方程求解即可;
(2)通過b2=ac,利用余弦定理求出cosx的范圍,然后求出x的范圍,求出
2x
3
+
π
3
的范圍,利用正弦函數(shù)的值域即可求出f(x)的值域.
解答:解:(1)∵函數(shù)f(x)=sin
x
3
cos
x
3
+
3
(1-sin2
x
3
)

=
1
2
sin
2x
3
+
3
2
(1+cos
2x
3
)
=
1
2
sin
2x
3
+
3
2
cos
2x
3
+
3
2

=sin(
2x
3
+
π
3
)+
3
2

2x
3
+
π
3
=kπ+
π
2
(k∈Z)得x=
3k
2
π+
π
4
(k∈Z),
即其圖象對稱軸的方程x=
3k
2
π+
π
4
(k∈Z).
(2)由已知b2=ac,cosx=
a2+c2-b2
2ac
=
a2+c2-ac
2ac
2ac-ac
2ac
=
1
2
,
1
2
≤cosx<1
,0<x≤
π
3

π
3
2x
3
+
π
3
9
,
∴sin
π
3
<sin(
2x
3
+
π
3
)≤1,
3
sin(
2x
3
+
π
3
)+
3
2
≤1+
3
2

則f(x)的值域為(
3
,1+
3
2
]
點評:本題是中檔題,考查三角函數(shù)的化簡求值,余弦定理的應用,正弦函數(shù)的值域的求法,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(附加題)
(Ⅰ)設非空集合S={x|m≤x≤l}滿足:當x∈S時有x2∈S,給出下列四個結(jié)論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結(jié)論為
②③④
②③④

(Ⅱ)已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將正奇數(shù)列{2n-1}中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:
記aij是這個數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)f(x)=
3x
3n
(其中x>0),設該數(shù)表的第n行的所有數(shù)之和為bn,
數(shù)列{f(bn)}的前n項和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•開封二模)已知函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)記△ABC的內(nèi)角A、B、C所對的邊長分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黑龍江一模)已知函數(shù)f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃山模擬)已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x
;
(Ⅲ)對一個實數(shù)集合M,若存在實數(shù)s,使得M中任何數(shù)都不超過s,則稱s是M的一個上界.已知e是無窮數(shù)列an=(1+
1
n
)n+a
所有項組成的集合的上界(其中e是自然對數(shù)的底數(shù)),求實數(shù)a的最大值.

查看答案和解析>>

同步練習冊答案