研究問題:“已知關(guān)于的不等式的解集為(1,2),解關(guān)于的不等式”,有如下解法:

解:由,則

所以不等式的解集為

參考上述解法,已知關(guān)于x的不等式的解集為(-3,-1)∪(2,3),

則關(guān)于x的不等式的解集為                    .

 

【答案】

【解析】

試題分析:由于根據(jù)已知的解法,和x的不等式的解集為(-3,-1)∪(2,3),可知用-替換x,不等式可化為,可得(-3,-1)∪(2,3),可得x,故答案為

考點(diǎn):本試題主要考查了不等式的解集的求解,是一個(gè)創(chuàng)新的試題。

點(diǎn)評(píng):解決該試題的關(guān)鍵是讀懂題意,將方程問題和不等式問題進(jìn)行轉(zhuǎn)化,利用二次不等式的解集問題和分式不等式的化簡(jiǎn)整式不等式的思想來解得。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0的解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”,有如下解法:
解:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,則y∈(
1
2
, 1)
,所以不等式cx2-bx+a>0的解集為(
1
2
, 1)

參考上述解法,已知關(guān)于x的不等式
k
x+a
+
x+b
x+c
<0
的解集為(-2,-1)∪(2,3),求關(guān)于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0的解集為(1,2),則關(guān)于x的不等式cx2-bx+a>0有如下解法:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,則y∈(
1
2
,1)
,所以不等式cx2-bx+a>0的解集為(
1
2
,1)
.參考上述解法,已知關(guān)于x的不等式
k
x+a
+
x+b
x+c
<0
的解集為(-2,-1)∪(2,3),則關(guān)于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0的解集為(1,3),解關(guān)于x的不等式cx2-bx+a>0”,有如下解法:
解:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,則y∈(
1
3
, 1)
,所以不等式cx2-bx+a>0的解集為(
1
3
, 1)

參考上述解法,已知關(guān)于x的不等式
k
x+a
+
x+b
x+c
<0
的解集為(-2,-1)∪(2,3),則關(guān)于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0的解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”,有如下解法:由ax2-bx+c⇒a-b(
1
x
)+c(
1
x
2>0,令y=
1
x
,則y∈(
1
2
,1)
,所以不等式cx2-bx+a>0的解集為(
1
2
,1).類比上述解法,已知關(guān)于x的不等式
k
x+a
+
x+b
x+c
<0
的解集為(-3,-2)∪(1,2),則關(guān)于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集為
(-1,-
1
2
)∪(
1
3
,
1
2
(-1,-
1
2
)∪(
1
3
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

研究問題:“已知關(guān)于x的方程ax2-bx+c=0的解集為{1,2},解關(guān)于x的方程cx2-bx+a=0”,有如下解法:
解:由ax2-bx+c=0⇒a-b(
1
x
)+c(
1
x
)2=0
,令y=
1
x
,則y∈{
1
2
, 1}

所以方程cx2-bx+a=0的解集為{
1
2
, 1}

參考上述解法,已知關(guān)于x的方程4x+3•2x+x-91=0的解為x=3,則
關(guān)于x的方程log2(-x)-
1
x2
+
3
x
+91=0
的解為
x=-
1
8
x=-
1
8

查看答案和解析>>

同步練習(xí)冊(cè)答案