(2007•肇慶二模)已知直線l的斜率為k=-1,經(jīng)過點M0(2,-1),點M在直線上,以
M0M
的數(shù)量t為參數(shù),則直線l的參數(shù)方程為
x=2-
2
2
t
y=-1+
2
2
t
(t為參數(shù))
x=2-
2
2
t
y=-1+
2
2
t
(t為參數(shù))
分析:由已知條件根據(jù)參數(shù)方程的意義,即可寫出直線l的參數(shù)方程.
解答:解:∵直線l經(jīng)過點M0(2,-1),斜率為k=-1,傾斜角為
4
,
∴直線l的參數(shù)方程為
x=2+tcos
4
y=-1+tsin
4
 
(t為參數(shù));
即為
x=2-
2
2
t
y=-1+
2
2
t
(t為參數(shù))

故答案為:
x=2-
2
2
t
y=-1+
2
2
t
(t為參數(shù))
點評:熟練掌握直線的參數(shù)方程的互化公式,正確理解參數(shù)的幾何意義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)已知向量
a
=(1,2),
b
=(2,x),且
a
b
=-1
,則x的值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)命題“?x∈R,x2-2x+4≤0”的否定為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)已知兩組數(shù)據(jù)x1,x2,…,xn與y1,y2,…,yn,它們的平均數(shù)分別是
.
x
.
y
,則新的一組數(shù)據(jù)2x1-3y1+1,2x2-3y2+1,…,2xn-3yn+1的平均數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)在空間中,有如下命題:
①互相平行的兩條直線在同一個平面內的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內的直線n⊥直線m,則直線n⊥平面β.
其中正確命題的個數(shù)為( 。﹤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)若x∈[-
π
2
,0]
,則函數(shù)f(x)=cos(x+
π
6
)-cos(x-
π
6
)+
3
cosx
的最小值是( 。

查看答案和解析>>

同步練習冊答案