【題目】已知點A的坐標為(4,1),點B(﹣7,﹣2)關于直線y=x的對稱點為C.
(Ⅰ)求以A、C為直徑的圓E的方程;
(Ⅱ)設經(jīng)過點A的直線l與圓E的另一個交點為D,|AD|=8,求直線l的方程.
【答案】解:(Ⅰ)點B(﹣7,﹣2)關于直線y=x的對稱點為C(﹣2,﹣7),
∵AC為直徑,AC中點E的坐標為(1,﹣3),
∴圓E的半徑為|AE|=5,
∴圓E的方程為(x﹣1)2+(y+3)2=25.
(Ⅱ)當直線l的斜率不存在時,易求|AD|=8,此時直線l的方程為x=4,
當直線l的斜率存在時,設l:y﹣1=k(x﹣4),
∴圓心E到直線l的距離d= ,
∵圓E的半徑為5,|AD|=8,所以d=3,
∴ =3,解得k= ,
∴直線l的方程為7x﹣24y﹣4=0.
綜上所述,直線l的方程為x=4或7x﹣24y﹣4=0
【解析】(Ⅰ)先根據(jù)題意求得點C的坐標,進而求得以線段AC為直徑的圓的圓心坐標及半徑,即可求得圓E的方程;(Ⅱ)求直線方程時,先根據(jù)直線斜率是否存在進行分類討論.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.
(1)當a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()
(1)若,用“五點法”在給定的坐標系中,畫出函數(shù)在[0,π]上的圖象.
(2)若偶函數(shù),求
(3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>4倍,縱坐標不變,得到函數(shù)的圖象,求在的單調遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“a=﹣1”是“直線ax+3y+2=0與直線x+(a﹣2)y+1=0平行”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, , , , 且, 分別為的中點.
(1)求證: 平面;
(2)求證: 平面;
(3)若二面角的大小為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設污水凈化管道(, 是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口是的中點, 分別落在線段上.已知米, 米,記.
(1)試將污水凈化管道的總長度 (即的周長)表示為的函數(shù),并求出定義域;
(2)問當取何值時,污水凈化效果最好?并求出此時管道的總長度.
(提示: .)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓.(14分)
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且(O為坐標原點),求m的值;
(3)在(2)的條件下,求以為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設∠DAB=θ,θ∈(0, ),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 則( )
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com