【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:平面AEC;
(2)設(shè)AP=1,AD=,三棱錐P-ABD的體積V=,求A到平面PBC的距離.
科目:高中數(shù)學 來源: 題型:
【題目】某支教隊有8名老師,現(xiàn)欲從中隨機選出2名老師參加志愿活動,
(1)若規(guī)定選出的至少有一名女老師,則共有18種不同的需安排方案,試求該支教隊男、女老師的人數(shù);
(2)在(1)的條件下,記為選出的2位老師中女老師的人數(shù),寫出的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究經(jīng)常使用手機是否對數(shù)學學習成績有影響,某校高二數(shù)學研究性學習小組進行了調(diào)查,隨機抽取高二年級50名學生的一次數(shù)學單元測試成績,并制成下面的2×2列聯(lián)表:
及格 | 不及格 | 合計 | |
很少使用手機 | 20 | 5 | 25 |
經(jīng)常使用手機 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
則有( )的把握認為經(jīng)常使用手機對數(shù)學學習成績有影響.
參考公式:,其中
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.97.5%B.99%C.99.5%D.99.9%
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)銳角△ABC的外接圓上的任意一點P所對應(yīng)的西姆松線為,P的對徑點為,與的交點為。證明:對上兩點P、Q,當且僅當時,關(guān)于點N對稱,其中,N為△ABC的九點圓的圓心。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線上任意一點到直線的距離是它到點距離的2倍;曲線是以原點為頂點,為焦點的拋物線.
(1)求的方程;
(2)設(shè)過點的直線與曲線相交于兩點,分別以為切點引曲線的兩條切線,設(shè)相交于點,連接的直線交曲線于兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,是上一動點,,點的軌跡為.
(1)求曲線的極坐標方程,并化為直角坐標方程;
(2)若點,直線的參數(shù)方程(為參數(shù)),直線與曲線的交點為,當取最小值時,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:
①函數(shù)的最大值為1;
②已知集合,則集合A的真子集個數(shù)為3;
③若為銳角三角形,則有;
④“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.
其中正確的命題是______.(填序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:.
(1)若拋物線的焦點與的焦點重合,求的標準方程;
(2)若的上頂點、右焦點及軸上一點構(gòu)成直角三角形,求點的坐標;
(3)若為的中心,為上一點(非的頂點),過的左頂點,作,交軸于點,交于點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】試問:能否把2008表示成的形式?如果可以,這種表示方式是否有無限多個?其中,m、n均為大于100且小于170的正整數(shù),且;均為兩兩不相等的小于6的正有理數(shù),且均為大于1且小于5的正整數(shù),同時, 兩兩不相等,也兩兩不相等請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com