△ABC中,AB=9,AC=15,∠BAC=120°,它所在平面外一點(diǎn)P到△ABC三個(gè)頂點(diǎn)的距離是14,那么點(diǎn)P到平面ABC的距離是:   
【答案】分析:作出P到平面ABC的高,判斷垂足是外心,然后解三角形ABC的外接圓半徑,最后求得P到平面ABC的距離.
解答:解析:記P在平面ABC上的射影為O,∵PA=PB=PC
∴OA=OB=OC,即O是△ABC的外心,只需求出OA(△ABC的外接圓的半徑),
記為R,在△ABC中由余弦定理知:
BC=21,在由正弦定理知:2R==14,∴OA=7,得:PO=7.
故答案為:7.
點(diǎn)評(píng):本題考查棱錐的結(jié)構(gòu)特征,考查正弦定理、余弦定理,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)△ABC中,AB=9,AC=15,∠BAC=120°,它所在平面外一點(diǎn)P到△ABC三個(gè)頂點(diǎn)的距離是14,那么點(diǎn)P到平面ABC的距離是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=9,AC=15,∠BAC=120°,△ABC所在平面外一點(diǎn)P到三頂點(diǎn)A,B,C的距離都是14,則P到平面ABC的距離是(  )
A、6B、7C、9D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,AB=9,AC=6,點(diǎn)E在AB上且AE=3,點(diǎn)F在AC上,連接EF,若△AEF與△ABC相似,則AF=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=9,AC =12,BC =18,DAC上一點(diǎn), ,在AB上取一點(diǎn)E,得到△ADE.若圖中的兩個(gè)三角形相似,則DE的長是( 。

A.6             B.8                C.6或8                    D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案