(本題滿分13分)如圖,圓柱內(nèi)有一個(gè)三棱柱,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑.
(Ⅰ)證明:平面平面;
(Ⅱ)設(shè),在圓柱內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于三棱柱內(nèi)的概率為.
(。┊(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求的最大值;
(ii)記平面與平面所成的角為,當(dāng)取最大值時(shí),求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知三棱錐的三視圖如圖所示.
(Ⅰ)求證:是直角三角形;
求三棱錐是全面積;
(Ⅲ)當(dāng)點(diǎn)在線段上何處時(shí),與平面所成的角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,設(shè)矩形ABCD(AB>AD)的周長(zhǎng)為24,把它關(guān)于AC折起來(lái),AB折過(guò)去后,交DC于點(diǎn)P. 設(shè)AB="x," 求△的最大面積及相應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中點(diǎn).
(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成角的正弦值;
(3)以AC的中點(diǎn)O為球心、AC為直徑的球交PC于點(diǎn)N求點(diǎn)N到平面ACM的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
下列三個(gè)圖中,左邊是一個(gè)正方體截去一個(gè)角后所得多面體的直觀圖。右邊兩個(gè)是正視圖和側(cè)視圖.
(1)請(qǐng)?jiān)谡晥D的下方,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖(不要求敘述作圖過(guò)程);
(2)求該多面體的體積(尺寸如圖).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分10分)如圖,已知四棱錐底面為菱形,平面,,分別是、的中點(diǎn).
(1)證明:
(2)設(shè), 若為線段上的動(dòng)點(diǎn),與平面所成的最大角的正切值為
,求此時(shí)異面直線AE和CH所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖,垂直于⊙所在的平面,是⊙的直徑,是⊙上一點(diǎn),過(guò)點(diǎn) 作,垂足為.
求證:平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)如圖,在三棱錐中,
底面,點(diǎn),
分別在棱上,且
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)為的中點(diǎn)時(shí),求與平面所成的角的正弦;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)如圖,在四棱錐中,平面平面,為等邊三角形,底面為菱形,,為的中點(diǎn),。
(1)求證:平面;
(2) 求四棱錐的體積
(3)在線段上是否存在點(diǎn),使平面; 若存在,求出的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com