在平面直角坐標(biāo)系中,點P (-1,2 ) 關(guān)于x軸的對稱點的坐標(biāo)為【   】
A.(-1,-2 )B.(1,-2 )C.(2,-1 )D.(-2,1 )
A

試題分析:
平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于x軸的對稱點的坐標(biāo)是(x,-y),即關(guān)于橫軸的對稱點,橫坐標(biāo)不變,縱坐標(biāo)變成相反數(shù),這樣就可以求出對稱點的坐標(biāo)。解:點P(2,3)關(guān)于x軸的對稱點的坐標(biāo)是(2,-3).故選B
點評:本試題考查了關(guān)于軸對稱的點的橫坐標(biāo)和縱坐標(biāo)的特點,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),則=________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象一定過點(  )
A.(1,1)B.(1,2)C.(2,0)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于在區(qū)間上有意義的兩個函數(shù),如果對于任意的,都有,則稱在區(qū)間上是接近的兩個函數(shù),否則稱它們在上是非接近的兩個函數(shù)。現(xiàn)有兩個函數(shù),,且都有意義.
(1)求的取值范圍;
(2)討論在區(qū)間上是否是接近的兩個函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

判斷下列各組中的兩個函數(shù)是同一函數(shù)的為(   )
(1),;
(2),;
(3),;
(4),
(5),。
A.(1),(2)B.(2),(3)C.(4)D.(3),(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是(-上的減函數(shù),
那么的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
若函數(shù)的定義域為,其中a、b為任
意正實數(shù),且a<b。
(1)當(dāng)A=時,研究的單調(diào)性(不必證明);
(2)寫出的單調(diào)區(qū)間(不必證明),并求函數(shù)的最小值、最大值;
(3)若其中k是正整數(shù),對一切正整數(shù)k不等式都有解,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),,其中
(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)用函數(shù)的單調(diào)性的定義證明:當(dāng)時,在區(qū)間上為減函數(shù);
(3)當(dāng),函數(shù)的圖象恒在函數(shù)圖象上方,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案