【題目】為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中微量元素的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):

當(dāng)產(chǎn)品中的微量元素,滿足時,該產(chǎn)品為優(yōu)等品

(1)若甲廠生產(chǎn)的產(chǎn)品共98件,用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;

(2)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及數(shù)學(xué)期望.

【答案】(1) ;(2).

【解析】試題分析:(1)由分層抽樣性質(zhì)能求出乙廠生產(chǎn)的產(chǎn)品總數(shù);(2)由題意,,由此能求出的分布列和均值.

試題解析:(1)由題意知,抽取比例為,則乙廠生產(chǎn)的產(chǎn)品數(shù)量為(件);由表格知乙廠生產(chǎn)的優(yōu)等品為2號和5號,所占比例為.

由此估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量為(件);

(2)由(1)知2號和5號產(chǎn)品為優(yōu)等品,其余3件為非優(yōu)等品,的取值為0,1,2.

,,,

從而分布列為

數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在哈爾濱的中央大街的步行街同側(cè)有6塊廣告牌,牌的底色可選用紅、藍(lán)兩種顏色,若要求相鄰兩塊牌的底色不都為藍(lán)色,則不同的配色方案共有( )

A. 20 B. 21 C. 22 D. 24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, 底面, , 為棱中點.

(1)求證: 平面;

(2)若中點, ,試確定的值,使二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

晝夜溫差

就診人數(shù)(個)

16

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選取的是月與月的兩組數(shù)據(jù),請根據(jù)月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?

參考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/15/5e628df7/SYS201712291544309711452715_ST/SYS201712291544309711452715_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市某商業(yè)公司為全面激發(fā)每一位職工工作的積極性、創(chuàng)造性,確保2017年超額完成銷售任務(wù),向黨的十九大獻(xiàn)禮.年初該公司制定了一個激勵銷售人員的獎勵方案:每季度銷售利潤不超過15萬元時,則按其銷售利潤的進(jìn)行獎勵;當(dāng)季銷售利潤超過15萬元時,若超過部分為萬元,則超出部分按進(jìn)行獎勵,沒超出部分仍按季銷售利潤的進(jìn)行獎勵.記獎金總額為 (單位:萬元),季銷售利潤為 (單位:萬元).

(Ⅰ)請寫出該公司激勵銷售人員的獎勵方案的函數(shù)表達(dá)式;

(Ⅱ)如果業(yè)務(wù)員李明在本年的第三季度獲得5.5萬元的獎金,那么,他在該季度的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形, 平面, ,點的中點.

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關(guān),在市第一人民醫(yī)院隨機對入院50人進(jìn)行了問卷調(diào)查,得到了如表的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.

(1)請將上面的列聯(lián)表補充完整;

(2)是否有99%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由.

參考格式: ,其中.

下面的臨界值僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知2件次品和3件正品放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)果.

1求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2已知每檢測一件產(chǎn)品需要費用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的定義域為 ,若對于任意的 ,都有 ,且當(dāng) 時,有

1)證明: 為奇函數(shù);

2)判斷 上的單調(diào)性,并證明;

3)設(shè) ,若 )對 恒成立,求實數(shù) 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案