(本題12分)如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面 ABCD,側(cè)棱PA=PD,底面ABCD為直角梯形,BCADABADAD=2AB=2BC=2,  OAD中點(diǎn).

(1)求證:PO⊥平面ABCD;

(2)求直線(xiàn)PB與平面PAD所成角的正弦值;

(3)線(xiàn)段AD上是否存在點(diǎn)Q,使得三棱錐的體積為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

(1)證明:,O為AD的中點(diǎn),,……………2分

側(cè)面PAD⊥底面 ABCD,側(cè)面PAD底面 ABCD=AD,PO面PAD

 PO⊥平面ABCD;       …………………………4分

(2)解:AB⊥AD,側(cè)面PAD⊥底面 ABCDAB⊥平面PAD

是直線(xiàn)PB與平面PAD所成的角,…………………………6分

中,AB=1,

即直線(xiàn)PB與平面PAD所成的角的正弦值為…………………………8分

(3)解:假設(shè)線(xiàn)段AD上存在點(diǎn)Q,使得三棱錐的體積為

 , 又………………10分

,,

線(xiàn)段AD上存在點(diǎn)Q,使得三棱錐的體積為,…………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高二9月質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,

AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E

與直線(xiàn)AA1的交點(diǎn)。

(1)證明:(i)EF∥A1D1;

(ii)BA1⊥平面B1C1EF;

(2)求BC1與平面B1C1EF所成的角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二文科數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:解答題

(本題12分)如圖所示,在直四棱柱中, ,點(diǎn)是棱上一點(diǎn).

(1)求證:

(2)求證:;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省高三全真模擬考試數(shù)學(xué)文卷 題型:解答題

((本題12分)如圖所示,在直四棱柱中, ,點(diǎn)是棱上一點(diǎn)

(1)求證:

(2)求證:;

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題

(本題12分)如圖1,在直角梯形ABCD中,∠ADC=90°,CDABAB=4,ADCD=2,M為線(xiàn)段AB的中點(diǎn),將△ACD沿折起,使平面ACD⊥平面ABC,得到幾何體DABC,如圖2所示.

(Ⅰ)求證:BC⊥平面ACD;

(Ⅱ)求二面角ACDM的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆四川省巴中市四縣中高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

((本題12分)如圖2,在棱長(zhǎng)為1的正方體ABCD—A1B1C1D1中,點(diǎn)E、F、G分別是DD1、BD、BB1的中點(diǎn)。

(Ⅰ)求直線(xiàn)EF與直線(xiàn)CG所成角的余弦值;

 (Ⅱ)求直線(xiàn)C1C與平面GFC所成角的正弦值;

     (Ⅲ)求二面角E—FC—B的余弦值。

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案