解答題

如圖,在△ABC中,AC=2,BC=1,

(1)

AB的值

(2)

的值.

答案:
解析:

(1)

解:在△ABC中,由余弦定理得

…………4分

(2)

解:

……………………8分

………………12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044

如圖所示,一過路人在河岸邊行走,當(dāng)走到A點(diǎn)時(shí),突然聽到河中B處有一落水兒童喊“救命”.假設(shè)過路人在岸上跑步速度為0.3km/分,而在水中游泳速度為0.1km/分.試問過路人應(yīng)該從哪一點(diǎn)入水,才能以最短的時(shí)間趕到落水地點(diǎn)?并說明理由(救護(hù)過程視B點(diǎn)為不動(dòng)點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044

如圖,一載著重危病人的火車從O地出發(fā),沿射線OA行駛,其中tanα=,在距離O地5a(a為正數(shù))公里北偏東β角的N處住有一位醫(yī)學(xué)專家,其中sinβ=,現(xiàn)110指揮部緊急征調(diào)離O地正東p公里的B處的救護(hù)車趕往N處載上醫(yī)學(xué)專家全速追趕乘有重危病人的火車,并在C處相遇,經(jīng)測算當(dāng)兩車行駛的路線與OB圍成的三角形OBC面積S最小時(shí),搶救最及時(shí),

(1)求S關(guān)于p的函數(shù)關(guān)系;

(2)當(dāng)p為何值時(shí),搶救最及時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044

如圖,一載著重危病人的火車從O地出發(fā),沿射線OA行駛,其中tanα=,在距離O地5a(a為正數(shù))公里北偏東β角的N處有一位醫(yī)學(xué)專家,其中sinβ=,現(xiàn)110指揮部緊急征調(diào)離O地正東p公里的B處的救護(hù)車趕往N處載上醫(yī)學(xué)專家全速追趕乘有危重病人的火車,并在C處相遇,經(jīng)測算當(dāng)兩車行駛的路線與OB圍成的三角形OBC面積最小時(shí),搶救最及時(shí).

(1)求S關(guān)于p的函數(shù)關(guān)系;

(2)當(dāng)p為何值時(shí),搶救最及時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:047

如圖所示,SA⊥正方形ABCD所在平面,過A作與SC垂直的平面分別交SB、SC、SD于E、K、H,求證:E、H分別是點(diǎn)A在直線SB和SD上的射影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省高州一中2007屆高三級數(shù)學(xué)(理科)(期中)考試題 題型:044

解答題

如圖,在四面體ABCD中,AC=,其余各棱長為2,

(1)

平面ABD與平面BCD是否垂直,證明你的結(jié)論;

(2)

求二面角A―CD―B的正切值.

查看答案和解析>>

同步練習(xí)冊答案