【題目】(本題滿分12分)

已知橢圓的中心在原點,焦點在軸上,橢圓上的點到焦點的距離的最

小值為,離心率為

(I)求橢圓的方程;

)過點(1,0)作直線兩點,試問:在軸上是否存在一個定點,使為定值?若存在,求出這個定點的坐標;若不存在,請說明理由。

【答案】

:(I)設橢圓E的方程為

由已知得:

2分

橢圓E的方程為················································3分

)解:假設存在符合條件的點,又設,則:

···················································5分

當直線的斜率存在時,設直線的方程為:,則

7分

所以

·················································9分

對于任意的值,為定值,

所以,得,

所以;······················································11分

當直線的斜率不存在時,直線

綜上述①②知,符合條件的點存在,起坐標為························12分

【解析】

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在某服裝商場,當某一季節(jié)即將來臨時,季節(jié)性服裝的價格呈現(xiàn)上升趨勢.設一種服裝原定價為每件70元,并且每周(7天)每件漲價6元,5周后開始保持每件100元的價格平穩(wěn)銷售;10周后,當季節(jié)即將過去時,平均每周每件降價6元,直到16周末,該服裝不再銷售.

(1)試建立每件的銷售價格(單位:元)與周次之間的函數(shù)解析式;

(2)若此服裝每件每周進價(單位:元)與周次之間的關系為,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價格-每件進價)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)且點在函數(shù)的圖象上.

1)求函數(shù)的解析式,并在圖中的直角坐標系中畫出函數(shù)的圖象;

2)求不等式的解集;

3)若方程有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線x2=1.

(1)若一橢圓與該雙曲線共焦點,且有一交點P(2,3),求橢圓方程.

(2)設(1)中橢圓的左、右頂點分別為AB,右焦點為F,直線l為橢圓的右準線,Nl上的一動點,且在x軸上方,直線AN與橢圓交于點M.若AMMN,求AMB的余弦值;

(3)設過A、F、N三點的圓與y軸交于P、Q兩點,當線段PQ的中點為(0,9)時,求這個圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分100分)統(tǒng)計結果如下表所示.

組別

頻數(shù)

25

150

200

250

225

100

50

(1)由頻數(shù)分布表可以大致認為,此次問卷調查的得分服從正態(tài)分布 近似為這1000人得分的平均值值(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示),請用正態(tài)分布的知識求

(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調查的市民制定如下獎勵方案::

(。┑梅植坏陀的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;

(ⅱ)每次獲贈送的隨機話費和對應的概率為:

贈送的隨機話費(單元:元)

20

40

概率

0.75

0.25

現(xiàn)有市民甲要參加此次問卷調查,記 (單位:元)為該市民參加問卷調查獲贈的話費,求的分布列與數(shù)學期望.

附:參考數(shù)據(jù)與公式

,若,則

;

;

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,分別是雙曲線的左頂點、右焦點,過的直線的一條漸近線垂直且與另一條漸近線和軸分別交于兩點.若,則的離心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標平面中, 的兩個頂點為,平面內兩點、同時滿足:①;②;③

(1)求頂點的軌跡的方程;

(2)過點作兩條互相垂直的直線,直線與點的軌跡相交弦分別為,設弦的中點分別為

①求四邊形的面積的最小值;

②試問:直線是否恒過一個定點?若過定點,請求出該定點,若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是偶函數(shù).

(1)求不等式的解集;

(2)若不等式對任意實數(shù)成立,求實數(shù)的取值范圍;

(3)設函數(shù),若上有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= lnxx,其中a>0.

(1)f(x)(0,+∞)上存在極值點,求a的取值范圍;

(2)a(1,e],當x1(0,1),x2(1,+∞)時,記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案