一盒中有12個乒乓球,其中9個新的,3個舊的,從盒中任取3個球來用,用完后裝回盒中,此時盒中舊球個數(shù)是一個隨機變量,其分布列為,則的值為(   )
A.B.C.D.
C

試題分析:從盒中任取3個球來用,用完后裝回盒中,當盒中舊球的個數(shù)為時,相當于舊球的個數(shù)在原來3個的基礎上增加了一個,所以取出的3個球中只有一個新球即取出的3個球中有2個是舊球1個新球,所以,故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

生產(chǎn)A,B兩種元件,其質(zhì)量按測試指標劃分為:指標大于或等于82為正品,小于82為次品,現(xiàn)隨機抽取這兩種元件各100件進行檢測,檢測結果統(tǒng)計如下:
測試指標





元件A
8
12
40
32]
8
元件B
7
18
40
29
6
(1)試分別估計元件A、元件B為正品的概率;
(2)生產(chǎn)一件元件A,若是正品可盈利50元,若是次品則虧損10元;生產(chǎn)一件元件B,若是正品可盈利100元,若是次品則虧損20元,在(1)的前提下;
(i)求生產(chǎn)5件元件B所獲得的利潤不少于300元的概率;
(ii)記X為生產(chǎn)1件元件A和1件元件B所得的總利潤,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某班50名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].從樣本成績不低于80分的學生中隨機選取2人,這2人中成績在90分以上(含90分)的人數(shù)為ξ,則ξ的數(shù)學期望為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩射手在同一條件下進行射擊,分布列如下:射手甲擊中環(huán)數(shù)8,9,10的概率分別為0.2,0.6,0.2;射手乙擊中環(huán)數(shù)8,9,10的概率分別為0.4,0.2,0.4.用擊中環(huán)數(shù)的期望與方差比較兩名射手的射擊水平.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某商店試銷某種商品20天,獲得如下數(shù)據(jù):
日銷售量(件)
0
1
2
3
頻數(shù)
1
5
9
5
試銷結束后(假設該商品的日銷售量的分布規(guī)律不變).設某天開始營業(yè)時由該商品3件,當天營業(yè)結束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當天進貨補充至3件,否則不進貨,將頻率視為概率.
(1)求當天商店不進貨的概率;
(2)記X為第二天開始營業(yè)時該商品視為件數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有兩臺自動包裝機甲與乙,包裝質(zhì)量分別為隨機變量X1,X2,已知E(X1)=E(X2),V(X1)>V(X2),則自動包裝機________的質(zhì)量好.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在高中“自選模塊”考試中,某考場的每位同學都選了一道數(shù)學題,第一小組選《數(shù)學史與不等式選講》的有1人,選《矩陣變換和坐標系與參數(shù)方程》的有5人,第二小組選《數(shù)學史與不等式選講》的有2人,選《矩陣變換和坐標系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(1)求選出的4人均為選《矩陣變換和坐標系與參數(shù)方程》的概率;
(2)設X為選出的4個人中選《數(shù)學史與不等式選講》的人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校校慶,各屆校友紛至沓來,某班共來了n位校友(n>8且n∈N*),其中女校友6位,組委會對這n位校友登記制作了一份校友名單,現(xiàn)隨機從中選出2位校友代表,若選出的2位校友是一男一女,則稱為“最佳組合”.
(1)若隨機選出的2位校友代表為“最佳組合”的概率不小于,求n的最大值;
(2)當n=12時,設選出的2位校友代表中女校友人數(shù)為ξ,求ξ的分布列和數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了了解市民的態(tài)度,在普通行人中隨機選取了200人進行調(diào)查,得到如下數(shù)據(jù):
處罰金額x(元)
0
5
10
15
20
會闖紅燈的人數(shù)y
80
50
40
20
10
若用表中數(shù)據(jù)所得頻率代替概率.現(xiàn)從這5種處罰金額中隨機抽取2種不同的金額進行處罰,在兩個路口進行試驗.
(Ⅰ)求這兩種金額之和不低于20元的概率;
(Ⅱ)若用X表示這兩種金額之和,求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案