【題目】選修坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1的普通方程和的傾斜角;

2)設(shè)點,交于兩點,求

【答案】1,;2

【解析】

試題分析:1消參可得,根據(jù)極坐標(biāo)與普通方程的互化,,代入化簡得,故傾斜角為;2在直線,可設(shè)直線的參數(shù)方程為為參數(shù))代入橢圓方程化簡得,,,又

試題解析:1)由消去參數(shù),得,

的普通方程為

,得,

代入(*),化簡得,

所以直線的傾斜角為

2)由(1)知,點在直線,可設(shè)直線的參數(shù)方程為為參數(shù)),即為參數(shù)),

代入并化簡,得

.設(shè)兩點對應(yīng)的參數(shù)分別為,

,

所以所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.

(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;

(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家計劃在2012年舉行商品促銷活動,經(jīng)調(diào)查測算,該商品的年銷售量萬件與年促銷費用萬元滿足:,其中為常數(shù),若不搞促銷活動,則該產(chǎn)品的年銷售量只有1萬件,已知2012年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家的產(chǎn)量等于銷售量,而銷售收入為生產(chǎn)成本的15生產(chǎn)成本由固定投入和再投入兩部分資金組成

12012年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);

2該廠2012年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處與直線相切,求的值;

(2)若曲線與直線有兩個不同交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地參加2015 年夏令營的名學(xué)生的身體健康情況,將學(xué)生編號為,采用系統(tǒng)抽樣的方法抽取一個容量為的樣本,且抽到的最小號碼為,已知這名學(xué)生分住在三個營區(qū),從在第一營區(qū),從在第二營區(qū),從在第三營區(qū),則第一、第二、第三營區(qū)被抽中的人數(shù)分別為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸垂直.

1)求的單調(diào)區(qū)間;

2)設(shè),對任意,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,,其前項和滿足,其中

(1)設(shè),證明數(shù)列是等數(shù)列;

(2)設(shè),為數(shù)列的前項和,求證

(3)設(shè)為非零整數(shù),),試確定的值,使得對任意,都有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角所對的邊分別為,且.

(1)求;

(2)若,的面積為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過點作垂直于軸的直線,直線垂直于點,線段的垂直平分線交于點

1求點的軌跡的方程;

2過點作兩條互相垂直的直線,且分別交橢圓于,求四邊形面積的最小值

查看答案和解析>>

同步練習(xí)冊答案