在(1+x)n的展開式中,已知第3項與第5項的系數(shù)相等,
(1)求展開式中的系數(shù)最大的項和系數(shù)最小的項;
(2)求(x2+x-2)n展開式中含x2項的系數(shù).
解:由已知得
(1)的通項,
當(dāng)r=3時,展開式中的系數(shù)最小,即為展開式中的系數(shù)最小的項;
當(dāng)r=2或4時,展開式中的系數(shù)最大,即為展開式中的系數(shù)最大的項。
(2)展開式中含x2項的系數(shù)為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•自貢一模)要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點x0處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
n•2n-1
n•2n-1
 n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省自貢市2012屆高三第一次診斷性考試數(shù)學(xué)文科試題 題型:022

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點x0處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)(x)的表達式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)(x)的表達式.綜合①、②可得到某些恒等式,利用上述思想方法,可得到恒等式:

_________(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點x0處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=________ n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省自貢市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點x處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=     n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省廣州市名師高考數(shù)學(xué)模擬試試卷(解析版) 題型:解答題

要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點x處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x代入導(dǎo)函數(shù)f′(x)的表達式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=     n∈N*

查看答案和解析>>

同步練習(xí)冊答案