精英家教網 > 高中數學 > 題目詳情

【題目】已知F1 , F2分別是橢圓C: =1(a>b>0)的兩個焦點,P(1, )是橢圓上一點,且 |PF1|,|F1F2|, |PF2|成等差數列.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F2 , 且與橢圓C交于A、B兩點,試問x軸上是否存在定點Q,使得 =﹣ 恒成立?若存在,求出點Q的坐標;若不存在,請說明理由.

【答案】
(1)解:∵ |PF1|,|F1F2|, |PF2|成等差數列,

|PF1|+ |PF2|=2|F1F2|,即2 a=4c,∴a= c.

,解得

∴橢圓方程為


(2)解:假設在x軸上存在點Q(m,0),使得 =﹣ 恒成立.

①當直線l的斜率為0時,A(﹣ ,0),B( ,0).

=(﹣ ﹣m,0), =( ﹣m,0).

=m2﹣2=﹣ ,解得 或m=﹣

②若直線l斜率不為0,設直線AB的方程為x=ty+1.

聯(lián)立方程組 ,消元得:(t2+2)y2+2ty﹣1=0.

設A(x1,y1),B(x2,y2),則y1+y2=﹣ ,y1y2=﹣

∴x1+x2=t(y1+y2)+2= ,

x1x2=(ty1+1)(ty2+1)=t2y1y2+t(y1+y2)+1=

=(x1﹣m,y1), =(x2﹣m,y2).

=(x1﹣m)(x2﹣m)+y1y2=x1x2﹣m(x1+x2)+m2+y1y2

= +m2 = =﹣

,解得m=

綜上,Q點坐標為( ,0)


【解析】(1)根據橢圓的性質及等差數列性質得出a= c,把P點坐標代入橢圓方程列方程組解出a,b得出橢圓方程;(2)設Q(m,0),當直線斜率為0時,求出A,B坐標,列方程解出m,當直線斜率不為0時,設AB方程為x=ty+1,聯(lián)立方程組得出A,B坐標的關系,根據 =﹣ 列方程解出m.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= x2+ax,g(x)=ex , a∈R且a≠0,e=2.718…,e為自然對數的底數.
(Ⅰ)求函數h(x)=f(x)g(x)在[﹣1,1]上極值點的個數;
(Ⅱ)令函數p(x)=f'(x)g(x),若a∈[1,3],函數p(x)在區(qū)間[b+a﹣ea , +∞]上均為增函數,求證:b≥e3﹣7.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,底面ABCD是邊長為4的菱形,∠ABC=60°,SA⊥平面ABCD,且SA=4,M在棱SA上,且AM=1,N在棱SD上且SN=2ND. (Ⅰ)求證:CN∥面BDM;
(Ⅱ)求直線SD與平面BDM所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,四邊形ABEF為直角梯形,且AF∥BE,AB⊥BE,平面ABCD∩平面ABEF=AB,AB=BE=2AF=2. (Ⅰ)求證:AC∥平面DEF;
(Ⅱ)若二面角D﹣AB﹣E為直二面角,
( i)求直線AC與平面CDE所成角的大小;
( ii)棱DE上是否存在點P,使得BP⊥平面DEF?若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設D是函數y=f(x)定義域內的一個區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個“次不動點”,也稱f(x)在區(qū)間D上存在次不動點.若函數f(x)=ax2﹣3x﹣a+ 在區(qū)間[1,4]上存在次不動點,則實數a的取值范圍是(
A.(﹣∞,0)
B.(0,
C.[ ,+∞)
D.(﹣∞, ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=|ax﹣1|. (Ⅰ)若f(x)≤2的解集為[﹣6,2],求實數a的值;
(Ⅱ)當a=2時,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數y=f(x)在區(qū)間I上是增函數,且函數 在區(qū)間I上是減函數,則稱函數f(x)是區(qū)間I上的“H函數”.對于命題:①函數 是(0,1)上的“H函數”;②函數 是(0,1)上的“H函數”.下列判斷正確的是(
A.①和②均為真命題
B.①為真命題,②為假命題
C.①為假命題,②為真命題
D.①和②均為假命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=lg(1﹣x2),集合A={x|y=f(x)},B={y|y=f(x)},則如圖中陰影部分表示的集合為(

A.[﹣1,0]
B.(﹣1,0)
C.(﹣∞,﹣1)∪[0,1)
D.(﹣∞,﹣1]∪(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x+exa , g(x)=ln(x+2)﹣4eax , 其中e為自然對數的底數,若存在實數x0 , 使f(x0)﹣g(x0)=3成立,則實數a的值為(
A.﹣ln2﹣1
B.﹣1+ln2
C.﹣ln2
D.ln2

查看答案和解析>>

同步練習冊答案