設(shè)橢圓過點,離心率為.
(1)求橢圓的方程;
(2)求過點且斜率為的直線被橢圓所截得線段的中點坐標(biāo).
(1);(2).

試題分析:(1)由橢圓過已知點和橢圓的離心率可以列出方程組,解方程組即可,也可以分步求解;(2)直線方程和橢圓方程組成方程組,可以求解,也可以利用根與系數(shù)的關(guān)系;然后利用中點坐標(biāo)公式求解即可.
試題解析:(1)將點代入橢圓C的方程得,        1分
,得                 3分
橢圓C的方程為                      4分
(2)過點且斜率為的直線為             5分
設(shè)直線與橢圓C的交點為,
將直線方程代入橢圓C方程,整理得      7分
由韋達定理得
          10分
由中點坐標(biāo)公式中點橫坐標(biāo)為,縱坐標(biāo)為
所以所截線段的中點坐標(biāo)為                    12分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、分別是橢圓的左、右焦點.
(1)若是第一象限內(nèi)該橢圓上的一點,,求點的坐標(biāo);
(2)設(shè)過定點的直線與橢圓交于不同的兩點、,且為銳角(其
為坐標(biāo)原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線lxy=0與以原點為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于AB兩點,設(shè)兩直線的斜率分別為k1,k2,且k1k2=4,證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面五邊形關(guān)于直線對稱(如圖(1)),,,將此圖形沿折疊成直二面角,連接、得到幾何體(如圖(2))

(1)證明:平面;
(2)求平面與平面的所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為橢圓上的三個點,為坐標(biāo)原點.
(1)若所在的直線方程為,求的長;
(2)設(shè)為線段上一點,且,當(dāng)中點恰為點時,判斷的面積是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線在點,處的切線垂直相交于點,直線與橢圓相交于兩點.

(1)求拋物線的焦點與橢圓的左焦點的距離;
(2)設(shè)點到直線的距離為,試問:是否存在直線,使得,,成等比數(shù)列?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當(dāng)點P(x0,y0)為直線l上的定點時,求直線AB的方程;
(3)當(dāng)點P在直線l上移動時,求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=4x上的點A到其焦點的距離是6,則點A的橫坐標(biāo)是            (    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線軸旋轉(zhuǎn)一周形成一個如圖所示的旋轉(zhuǎn)體,在此旋轉(zhuǎn)體內(nèi)水平放入一個正方體,該正方體的一個面恰好與旋轉(zhuǎn)體的開口面平齊,則此正方體的體積是       

查看答案和解析>>

同步練習(xí)冊答案