在△ABC中,已知sinA+cosA=
1213
,則△ABC的形狀是
 
分析:對(duì)題設(shè)兩邊平方,求得sin2A的值.根據(jù)sin2A小于零,求出A的范圍得到答案.
解答:解:∵(sinA+cosA)2=sin2A+cos2A+2sinAcosA=1+sin2A=
144
169

∴sin2A=-
25
169
<0
∴π≤2A≤2π,即
π
2
≤A≤π
∴△ABC的形狀是 鈍角三角形.
故答案為:鈍角三角形
點(diǎn)評(píng):本題主要考查了二倍角公式的運(yùn)用.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知|
AB
|=4,|
AC
|=1,S△ABC=
3
,則
AB
AC
的值為( 。
A、-2B、2C、±4D、±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)模擬)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P為線段AB上的點(diǎn),且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,則xy的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=8,c=18,S△ABC=36
3
,則B等于
B=
π
3
3
B=
π
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,S△ABC=6
,P為線段AB上的一點(diǎn),且
CP
=x•
CA
|
CA
|
+y•
CB
|
CB
|
,則
1
x
+
1
y
的最小值為
7
12
+
3
3
7
12
+
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高中數(shù)學(xué)全解題庫(kù)(國(guó)標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044

在△ABC中,已知SABC(a2+b2),求A,BC

查看答案和解析>>

同步練習(xí)冊(cè)答案