設項數(shù)均為k(k≥2,k∈N*)的數(shù)列{an}、{bn}、{cn}前n項的和分別為Sn、Tn、Un.已知集合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k-2,4k}.
(1)已知Un=2n+2n,求數(shù)列{cn}的通項公式;
(2)若Sn-Tn=2n+2n(1≤n≤k,n∈N*),試研究k=4和k≥6時是否存在符合條件的數(shù)列對({an},{bn}),并說明理由;
(3)若an-bn=2n  (1≤n≤k, n∈N*),對于固定的k,求證:符合條件的數(shù)列對({an},{bn})有偶數(shù)對.
分析:(1)由Un=2n+2n,分別求出n=1時c1的值和n≥2時數(shù)列{cn}的通項,驗證c1后寫出數(shù)列{cn}的通項公式;
(2)由Sn-Tn=2n+2n,取n=1時得到a1-b1=S1-T1=4,寫出n≥2時的an-bn,然后驗證n=4時存在符合條件的數(shù)列對,當n≥6時,借助于不等式放縮及二項式定理可說明不存在符合條件的數(shù)列對;
(3)令dn=4k+2-bn,en=4k+2-an(1≤n≤k,n∈N*),易驗證an,bn與dn,cn分別成對滿足條件an-bn=2n  (1≤n≤k, n∈N*),當an與dn交換時得到矛盾式子,說明符合條件的數(shù)列對({an},{bn})有偶數(shù)對.
解答:解:(1)已知Un=2n+2n,
當n=1時,c1=U1=4.
當n≥2時,cn=Un-Un-1=2n+2n-2(n-1)-2n-1=2+2n-1,
經(jīng)驗證c1=4不適合上式,
cn=
4,  n=1
2+2n-1,  2≤n≤k
;
(2)Sn-Tn=2n+2n
當n=1時,a1-b1=S1-T1=4,
當n≥2時,an-bn=(Sn-Sn-1)-(Tn-Tn-1
=(Sn-Tn)-(Sn-1-Tn-1)=2n+2n-2(n-1)-2n-1=2+2n-1,
當k=4時,a1-b1=4,a2-b2=4,a3-b3=6,a4-b4=10,
{a1,a2,a3,a4,b1,b2,b3,b4}={2,4,6,8,10,12,14,16}
數(shù)列{an}、{bn}可以為(不唯一):
①6,12,16,14;2,8,10,4;
②16,10,8,14;12,6,2,4.
當k≥6時,ak=bk+2+2k-1>2+2k-1=2+(1+1)k-1
=2+
C
0
k-1
+
C
1
k-1
+
C
2
k-1
+…+
C
k-2
k-1
+
C
k-1
k-1

≥2+2(
C
0
k-1
+
C
1
k-1
+
C
2
k-1
)=k2-k+4

=(k-1)(k-4)+4k>4k
此時ak不存在.故數(shù)列對({an},{bn})不存在;
(3)令dn-en=(4k+2-bn)-(4k+2-an)=an-bn=2n,
又{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k},得
{4k+2-a1,4k+2-a2,…,4k+2-ak,4k+2-b1,4k+2-b2,…,4k+2-bk}
={2,4,6,…,4k},
∴數(shù)列對({an},{bn})與({dn},{en})成對出現(xiàn). 
假設數(shù)列{an}與{dn}相同,則由d2=4k+2-b2=a2及a2-b2=4,得
a2=2k+3,b2=2k-1,均為奇數(shù),矛盾.
故符合條件的數(shù)列對({an},{bn})有偶數(shù)對.
點評:本題考查了數(shù)列遞推式,是性定義題,解答的關鍵是對題意的理解,屬有一定難度題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設項數(shù)均為k(k≥2,k∈N*)的數(shù)列{an}、{bn}、{cn}前n項的和分別為Sn、Tn、Un.已知:an-bn=2n  (1≤n≤k, n∈N*),且集合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k-2,4k}.
(1)已知Un=2n+2n,求數(shù)列{cn}的通項公式;
(2)若k=4,求S4和T4的值,并寫出兩對符合題意的數(shù)列{an}、{bn};
(3)對于固定的k,求證:符合條件的數(shù)列對({an},{bn})有偶數(shù)對.

查看答案和解析>>

同步練習冊答案