【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足|OM||OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)A的極坐標(biāo)為(2, ),點(diǎn)B在曲線C2上,求△OAB面積的最大值.
【答案】解:(Ⅰ)曲線C1的直角坐標(biāo)方程為:x=4,
設(shè)P(x,y),M(4,y0),則 ,∴y0= ,
∵|OM||OP|=16,
∴ =16,
即(x2+y2)(1+ )=16,
整理得:(x﹣2)2+y2=4(x≠0),
∴點(diǎn)P的軌跡C2的直角坐標(biāo)方程:(x﹣2)2+y2=4(x≠0).
(Ⅱ)點(diǎn)A的直角坐標(biāo)為A(1, ),顯然點(diǎn)A在曲線C2上,|OA|=2,
∴曲線C2的圓心(2,0)到弦OA的距離d= = ,
∴△AOB的最大面積S= |OA|(2+ )=2+ .
【解析】(Ⅰ)設(shè)P(x,y),利用相似得出M點(diǎn)坐標(biāo),根據(jù)|OM||OP|=16列方程化簡(jiǎn)即可;
(Ⅱ)求出曲線C2的圓心和半徑,得出B到OA的最大距離,即可得出最大面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對(duì)角線AC的長(zhǎng)為10 cm,容器Ⅱ的兩底面對(duì)角線EG,E1G1的長(zhǎng)分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長(zhǎng)度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))
(Ⅰ)將l放在容器Ⅰ中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒入水中部分的長(zhǎng)度;
(Ⅱ)將l放在容器Ⅱ中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒入水中部分的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為有公共焦點(diǎn)的橢圓與雙曲線的一個(gè)交點(diǎn),且,若橢圓的離心率為,雙曲線的離心率為,則的最小值為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),右頂點(diǎn)為點(diǎn).
(1)若直線與橢圓相交于點(diǎn)兩點(diǎn)(不是左、右頂點(diǎn)),且,求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(2)是橢圓的兩個(gè)動(dòng)點(diǎn),若直線的斜率與的斜率互為相反數(shù),試判斷直線EF的斜率是否為定值?如果是,求出定值;反之,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,兩個(gè)頂點(diǎn)分別為,.過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),直線與的交點(diǎn)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:點(diǎn)在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓, 為拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)作圓的兩條切線與軸交于.
(1)若,求過(guò)點(diǎn)的圓的切線方程;
(2)若,求△面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,是角的對(duì)邊,則其中真命題的序號(hào)是__________.
①若,則在上是增函數(shù);
②若,則是直角三角形;
③ 的最小值為;
④若,則;
⑤若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線: ,點(diǎn)為的左焦點(diǎn),點(diǎn)為上位于第一象限內(nèi)的點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,,,則的離心率為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com