計(jì)算
lim
n→∞
[1+
2
3
+(
2
3
)2+(
2
3
)3+…+(
2
3
)n-1]
的結(jié)果是(  )
A、
5
3
B、3
C、
2
3
D、2
分析:由等比數(shù)列的性質(zhì)知原式可轉(zhuǎn)化為
lim
n→∞
3[1-(
2
3
)
n
],由此能求出其結(jié)果.
解答:解:∵1+
2
3
+(
2
3
)
2
+(
2
3
)
3
+…+(
2
3
)
n-1
=3[1-(
2
3
)
n
],
lim
n→∞
[1+
2
3
+(
2
3
)2+(
2
3
)3+…+(
2
3
)n-1]

=
lim
n→∞
3[1-(
2
3
)
n
]=3.
故選B.
點(diǎn)評(píng):本題考查數(shù)列的極限和運(yùn)算,解題時(shí)要注意等比數(shù)列前n項(xiàng)和的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算
lim
n→∞
(1-
3n
n+3
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算
lim
n→∞
1+2+3+…+n
n2
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計(jì)算
lim
n→∞
(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
4n2
)

(2)若
lim
n→∞
(2n+
an2-2n+1
bn+2
)=1
,求
a
b
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)計(jì)算
lim
n→∞
(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
4n2
)

(2)若
lim
n→∞
(2n+
an2-2n+1
bn+2
)=1
,求
a
b
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案