如圖是一個(gè)斜三棱柱,已知、平面平面、,又、分別是的中點(diǎn).

(1)求證:∥平面; (2)求二面角的大小.

(1)詳見解析;(2)二面角的大小是.

解析試題分析:(1)證明線面平行,有兩種思路,一是證線面平行,二通過面面平行來(lái)證明.在本題中,兩種思路比較,可以看出,取AC的中點(diǎn)P,證明平面MPN∥平面是很容易的.

(2)首先作出二面角的平面角. 由于平面平面,所以過C1作BC的垂線,則該垂線垂直于面BCN.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/39/c/2qqgb2.png" style="vertical-align:middle;" />、、,∴ , 
從而 ⊥平面.
再過點(diǎn)B作BO⊥CN于O、連,則⊥CN
所以∠是二面角的一個(gè)平面角.在中,求出即可∠.
試題解析:(1)取AC的中點(diǎn)P,連MP、NP。易證MP∥、NP∥BC,所以平面MPN∥平面,得MN∥平面                                          4分

(2)設(shè),則、、
                                        5分
⊥平面                                 6分
過點(diǎn)B作BO⊥CN于O、連,則⊥CN
所以∠是二面角的一個(gè)平面角         9分
又易求,得
,即             11分
也即二面角的大小是           12分
考點(diǎn):1、直線與平面平行;2、二面角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知三棱柱中,平面⊥平面ABC,BC⊥AC,D為AC的中點(diǎn),AC=BC=AA1=A1C=2。

(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B與平面A1BC的夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形.

(1)求證:DM∥平面APC; (2)求證:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

右圖為一組合體,其底面為正方形,平面,,且

(Ⅰ)求證:平面;
(Ⅱ)求四棱錐的體積;
(Ⅲ)求該組合體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且

(I)求證:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖四棱錐中,底面是平行四邊形,平面,垂足為,上且,,的中點(diǎn),四面體的體積為.

(1)求二面角的正切值;
(2)求直線到平面所成角的正弦值;
(3)在棱上是否存在一點(diǎn),使異面直線所成的角為,若存在,確定點(diǎn)的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱柱中,已知平面,且

(1)求證:;
(2)在棱BC上取一點(diǎn)E,使得∥平面,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在三棱錐S-ABC中,△ABC是邊長(zhǎng)為4的正三角形,平面SAC⊥平面ABC,,、分別為的中點(diǎn).

(1)求二面角的余弦值;
(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱中,D、E分別為、AD的中點(diǎn),F(xiàn)為上的點(diǎn),且

(I)證明:EF∥平面ABC;
(Ⅱ)若,,求二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案