設(shè),函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若對(duì)于任意,不等式恒成立,求的取值范圍。

 

【答案】

(1)增區(qū)間:()和(),   減區(qū)間();(2).

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用 第一問(wèn)中利用導(dǎo)數(shù)的符號(hào)來(lái)判定函數(shù)的單調(diào)增區(qū)間和單調(diào)減區(qū)間,第二問(wèn)中,因?yàn)閷?duì)于任意,不等式恒成立

等價(jià)于求解f(x)的最大值小于等于零即可。然后求解函數(shù)y=f(x)在的最大值即可,結(jié)合第一問(wèn)的結(jié)論可知最大值在得到結(jié)論。

(1)解:

故增區(qū)間:()和(),   減區(qū)間()

(2)因?yàn)閷?duì)于任意,不等式恒成立,則需要求解f(x)的最大值小于等于零即可。然后求解函數(shù)y=f(x)在的最大值即可。結(jié)合第一問(wèn)中的結(jié)論,可知在該區(qū)間先增后減,則最大值在極大值點(diǎn)處產(chǎn)生,并且為

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2+lnx+(a-4)x
在(1,+∞)上是增函數(shù).
(1)求實(shí)數(shù)a的取值范圍;
(2)在(1)的結(jié)論下,設(shè)g(x)=|ex-a|+
a2
2
,x∈[0,ln3]
,求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b∈R,且a≠2,定義在區(qū)間(-b,b)內(nèi)的函數(shù)f(x)=lg
1+ax1+2x
是奇函數(shù).
(1)求b的取值范圍;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
-2x+a2x+1+b
(a,b為實(shí)數(shù))若f(x)是奇函數(shù).
(1)求a與b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)證明對(duì)任何實(shí)數(shù)x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆上海市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

設(shè),函數(shù)

(1)求的定義域,并判斷的單調(diào)性;

(2)當(dāng)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052117303339063401/SYS201205211732322343442844_ST.files/image004.png">時(shí),值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052117303339063401/SYS201205211732322343442844_ST.files/image005.png">,求、的取值范圍.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案