過橢圓()的左焦點(diǎn)軸的垂線交橢圓于點(diǎn),為右焦點(diǎn),若,則橢圓的離心率為(     )
A.B.C.D.
B
此題考查橢圓的性質(zhì)的應(yīng)用、離心率的求法;由已 知可得出:,在中,,選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓C:=1的左.右焦點(diǎn)為,離心率為,直線與x軸、y軸分別交于點(diǎn),是直線與橢圓C的一個(gè)公共點(diǎn),是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),設(shè)
(Ⅰ)證明:; (Ⅱ)確定的值,使得是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是橢圓: ()的左、右焦點(diǎn),過斜率為1的直線與該橢圓相交于P,Q兩點(diǎn),且,,成等差數(shù)列.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)點(diǎn)M(0,-1)滿足|MP|=|MQ|,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,橢圓的短軸端點(diǎn)和焦點(diǎn)所組成的四邊形周長(zhǎng)等于8。
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等軸雙曲線C與橢圓有公共的焦點(diǎn),則雙曲線C的方程為____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的左右焦點(diǎn)是F1,F(xiàn)2,設(shè)P是雙曲線右支上一點(diǎn),上的投影的大小恰好為||,且它們的夾角為,則雙曲線的離心率e為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在橢圓中,為橢圓上的一點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于兩點(diǎn),其中在第一象限,過軸的垂線,垂足為,連接,
(1)若直線的斜率均存在,問它們的斜率之積是否為定值,若是,求出這個(gè)定值,若不是,說明理由;
(2)若的延長(zhǎng)線與橢圓的交點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)A(4,4),若拋物線y2=2px的焦點(diǎn)與橢圓=1的右焦點(diǎn)重合,該拋物線上有一點(diǎn)M,它在y軸上的射影為N,則|MA|+|MN|的最小值為___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的一個(gè)焦點(diǎn)坐標(biāo)為(0,1),則實(shí)數(shù)的值等于_____        ____,

查看答案和解析>>

同步練習(xí)冊(cè)答案