已知奇函數(shù)f(x)=cos(ωx+φ)(ω>0,且-π≤φ≤0)的定義域?yàn)镽,其圖象C關(guān)于直線x=
π
4
對(duì)稱,又f(x)在區(qū)間[0,
π
6
]上是單調(diào)函數(shù).
(1)求函數(shù)f(x)的表達(dá)式;
(2)將圖象C向右平移
π
4
個(gè)單位后,得到函數(shù)y=g(x)的圖象.
①化簡(jiǎn),并求值:
1+f(20°)+g(20°)
1+f(20°)-g(20°)
+4f(10°);
②若關(guān)于x的方程f(x)=g(x)+m在區(qū)間[0,
π
6
]上有唯一實(shí)根,求實(shí)數(shù)m的取值范圍.
(1)由f(x)=cos(ωx+φ)是R上的奇函數(shù),得f(0)=cosφ=0.
又-π≤φ≤0,所以φ=-
π
2
.…(1分)
所以f(x)=cos(ωx-
π
2
)=sinωx.…(2分)
由y=f(x)的圖象關(guān)于直線x=
π
4
對(duì)稱,且ω>0,得
ω•
π
4
=kπ+
π
2
(k∈N),解得ω=4k+2(k∈N).①…(3分)
又f(x)在區(qū)間[0,
π
6
]
上是單調(diào)函數(shù),所以0≤ω•x≤ω•
π
6
π
2

解得ω≤3.②…(4分)
由①②,得ω=2.所以f(x)=sin2x.…(5分)
(2)g(x)=f(x-
π
4
)=sin(2x-
π
2
)=-cos2x.…(6分)
①原式=
1+sin40°-cos40°
1+sin40°+cos40°
+4sin20°

=
2sin20°(sin20°+cos20°)
2cos20°(sin20°+cos20°)
+4sin20°

=
sin20°
cos20°
+4sin20°
 …(7分)
=
sin20°
cos20°
+4sin20°•
cos20°
cos20°

=
sin20°+2sin40°
cos20°
 …(8分)
=
sin20°+2sin(60°-20°)
cos20°
 …(9分)
=
sin20°+
3
cos20°-sin20°
cos20°

=
3
.…(10分)
②m=f(x)-g(x)=sin2x+cos2x=
2
sin(2x+
π
4
).…(11分)
易知函數(shù)y=
2
sin(2x+
π
4
)在區(qū)間[0,
π
8
]
上單調(diào)遞增,在區(qū)間[
π
8
,
π
6
]
上單調(diào)遞減.…(12分)
又當(dāng)x=0時(shí),f(x)-g(x)=1;       
 當(dāng)x=
π
8
時(shí),f(x)-g(x)=
2
;
當(dāng)x=
π
6
時(shí),f(x)-g(x)=
3
+1
2
.…(13分)
故所求實(shí)數(shù)m的取值范圍是m=
2
或1≤m<
3
+1
2
.…(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)為R上的減函數(shù),則關(guān)于a的不等式f(a2)+f(2a)>0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知f(x)=lg
1-x1+x
,判斷f(x)的奇偶性
(2)已知奇函數(shù)f(x)的定義域?yàn)镽,x∈(-∞,0)時(shí),f(x)=-x2-x-1,求f(x)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③要得到函數(shù)y=sin(2x+
π
3
)
的圖象,只要將y=sin2x的圖象向左平移
π
3
單位;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)镽,且f(x)是以2為周期的周期函數(shù),數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,則f(a1)+f(a2)+…+f(a2008)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)滿足f(x)=-f(x+2),當(dāng)x∈[0,1]時(shí),f(x)=x,若af2(x)+bf(x)+c=0在x∈[0,6]上恰有5個(gè)根,且記為xi(i=1,2,3,4,5),則x1+x2+x3+x4+x5=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案