【題目】已知變量之間的線性回歸方程為,且變量之間的一組相關(guān)數(shù)據(jù)如表所示,則下列說法錯誤的是( )
x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A. 變量之間呈現(xiàn)負(fù)相關(guān)關(guān)系
B. 的值等于5
C. 變量之間的相關(guān)系數(shù)
D. 由表格數(shù)據(jù)知,該回歸直線必過點(9,4)
【答案】C
【解析】分析:根據(jù)平均數(shù)的計算公式,求得樣本中心為,代入回歸直線的方程,即可求解,得到樣本中心,再根據(jù)之間的變化趨勢,可得其負(fù)相關(guān)關(guān)系,即可得到答案.
詳解:由題意,根據(jù)上表可知,
即數(shù)據(jù)的樣本中心為,
把樣本中心代入回歸直線的方程,可得,解得,
則,即數(shù)據(jù)的樣本中心為,
由上表中的數(shù)據(jù)可判定,變量之間隨著的增大,值變小,所以呈現(xiàn)負(fù)相關(guān)關(guān)系,
由于回歸方程可知,回歸系數(shù),而不是,所以C是錯誤的,故選C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1﹣x﹣ax2 . (Ⅰ)當(dāng)a=0時,求證:f(x)≥0;
(Ⅱ)當(dāng)x≥0時,若不等式f(x)≥0恒成立,求實數(shù)a的取值范圍;
(Ⅲ)若x>0,證明(ex﹣1)ln(x+1)>x2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化.某調(diào)查機(jī)構(gòu)隨機(jī)抽取8名購物者進(jìn)行采訪,4名男性購物者中有3名傾向于網(wǎng)購,1名傾向于選擇實體店,4名女性購物者中有2名傾向于選擇網(wǎng)購,2名傾向于選擇實體店.
(1)若從8名購物者中隨機(jī)抽取2名,其中男女各一名,求至少1名傾向于選擇實體店的概率:
(2)若從這8名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中為了解高中學(xué)生的性別和喜歡打籃球是否有關(guān),對50名高中學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
已知在這50人中隨機(jī)抽取1人,抽到喜歡打籃球的學(xué)生的概率為
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(2)若對于任意,都有成立,求實數(shù)的取值范圍;
(3)若,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國數(shù)學(xué)家科拉茨1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到1. 對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:如果對正整數(shù)n(首項)按照上述規(guī)則施行變換后的第8項為1(注:l可以多次出現(xiàn)),則n的所有不同值的個數(shù)為
A. 4 B. 6 C. 8 D. 32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點處,極軸與x軸的正半軸重合.直線l的參數(shù)方程為:(t為參數(shù)),曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(Ⅰ)寫出C的直角坐標(biāo)方程,并指出C是什么曲線;
(Ⅱ)設(shè)直線l與曲線C相交于P、Q兩點,求|PQ|值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}前n項和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(Ⅰ)求證數(shù)列{an}是首項為1的等比數(shù)列;
(Ⅱ)當(dāng)a2=2時,是否存在等差數(shù)列{bn},使得a1bn+a2bn﹣1+a3bn﹣2+…+anb1=2n+1﹣n﹣2對一切n∈N*都成立?若存在,求出bn;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com