【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosB=bcosA.
(1)判斷△ABC的形狀;
(2)求sin(2A+ )﹣2cos2B的取值范圍.
【答案】
(1)解:由acosB=bcosA,結(jié)合正弦定理可得,sinAcosB=cosAsinB,
即sinAcosB﹣cosAsinB=0,得sin(A﹣B)=0,
∵A,B∈(0,π),
∴A﹣B∈(﹣π,π),則A﹣B=0,
∴A=B,即△ABC為等腰三角形
(2)解:sin(2A+ )﹣2cos2B=sin2Acos +cos2Asin ﹣2cos2B
= ﹣(1+cos2B)= ﹣cos2A﹣1
= = .
∵0 ,∴ ,
則 ∈(﹣ ].
即sin(2A+ )﹣2cos2B的取值范圍是:(﹣ ]
【解析】(1)由已知等式結(jié)合正弦定理化邊為角,再由兩角差的余弦求得sin(A﹣B)=0,可得A=B,則△ABC為等腰三角形;(2)把sin(2A+ )﹣2cos2B利用兩角和的正弦及降冪公式化簡,得到關(guān)于A的三角函數(shù),再由A的范圍求得答案.
科目:高中數(shù)學 來源: 題型:
【題目】某學校有2500名學生,其中高一1000人,高二900人,高三600人,為了了解學生的身體健康狀況,采用分層抽樣的方法,若從本校學生中抽取100人,從高一和高三抽取樣本數(shù)分別為a,b,且直線ax+by+8=0與以A(1,﹣1)為圓心的圓交于B,C兩點,且∠BAC=120°,則圓C的方程為( )
A.(x﹣1)2+(y+1)2=1
B.(x﹣1)2+(y+1)2=2
C.(x﹣1)2+(y+1)2=
D.(x﹣1)2+(y+1)2=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(1﹣2a)x﹣lnx(a∈R).
(1)求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(2)若A(x1 , y1),B(x2 , y2),C(x0 , y0)是函數(shù)f(x)圖象上不同的三點,且x0= ,試判斷f′(x0)與 之間的大小關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,準線為l,過點F的直線交拋物線于A,B兩點,點A在l上的射影為A1 . 若|AB|=|A1B|,則直線AB的斜率為( )
A.±3
B.±2
C.±2
D.±
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)設(shè)max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2c﹣a=2bcosA.
(1)求角B的大小;
(2)若b=2 ,求a+c的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】宋元時期數(shù)學名著《算學啟蒙》中有關(guān)于“松竹并生”的問題,松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的a=10,b=4,則輸出的n=( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電視臺推出一檔游戲類綜藝節(jié)目,選手面對1﹣5號五扇大門,依次按響門上的門鈴,門鈴會播放一段音樂,選手需正確回答這首歌的名字,回答正確,大門打開,并獲得相應的家庭夢想基金,回答每一扇門后,選手可自由選擇帶著目前的獎金離開,還是繼續(xù)挑戰(zhàn)后面的門以獲得更多的夢想基金,但是一旦回答錯誤,游戲結(jié)束并將之前獲得的所有夢想基金清零;整個游戲過程中,選手有一次求助機會,選手可以詢問親友團成員以獲得正確答案. 1﹣5號門對應的家庭夢想基金依次為3000元、6000元、8000元、12000元、24000元(以上基金金額為打開大門后的累積金額,如第三扇大門打開,選手可獲基金總金額為8000元);設(shè)某選手正確回答每一扇門的歌曲名字的概率為pi(i=1,2,…,5),且pi= (i=1,2,…,5),親友團正確回答每一扇門的歌曲名字的概率均為 ,該選手正確回答每一扇門的歌名后選擇繼續(xù)挑戰(zhàn)后面的門的概率均為 ;
(1)求選手在第三扇門使用求助且最終獲得12000元家庭夢想基金的概率;
(2)若選手在整個游戲過程中不使用求助,且獲得的家庭夢想基金數(shù)額為X(元),求X的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com